Участники процесса моделирования. Технологические этапы создания и использования моделей. Построение концептуальной модели

Основные этапы моделирования.

Описание процесса моделирования.

Моделирование является одним из ключевых видов деятельности человека. Моделирование всегда предшествует любому делу в той или иной форме, позволяет обоснованно принимать решения о том, как совершенствовать привычные объекты, надо ли создавать новые, как изменять процессы управления и, в конечном итог, - как менять окружающий мир в лучшую сторону.

Когда мы беремся за какую-либо работу, то сначала мы четко представляем себе прототип (объект или процесс). Далее мы продумываем этапы (этапы моделирования), выполняем ее (моделируем) и принимаем существующий, либо получаем о нем дополнительную информацию.

Поясним на примерах. Пример 1.

Вспомним историю развития космической техники. Для реализации космического полета надо было решить две проблемы: преодолеть земное притяжение и обеспечить продвижение в безвоздушном пространстве. Эти проблемы начал рассматривать еще Ньютон в XVII веке, далее идут работы и закончил их.

Ньютон говорил о возможности преодоления притяжения Земли.

предложил для продвижения в пространстве создать реактивный двигатель, в котором используется в качестве топлива смесь жидкого кислорода и водорода . Эта смесь при сгорании выделяет энергию, достаточную для движения ракеты. Циолковский составил достаточно точ­ную словесную модель будущего космического корабля с чертежами, расче­тами и обоснованиями.

Спустя полвека описательная модель стала основой для реального моделирования в конструкторском бюро под руководством. В процессе моделирования менялись состав топлива, форма ракеты, система управления полетом, система жизнеобеспечения космо­навтов, приборы для научных исследований и т. д. В результате такого моде­лирования мощные ракеты вывели на околоземное пространство искусст­венные спутники земли и корабли с космонавтами на борту и космические станции.


Пример 2

Известный химик XVIII века Антуан Лавуазье изучал процесс горения. При этом он проводил многочисленные опыты с различными веществами, которые нагревал и взвешивал до и после опыта. В ходе опытов ученый за­фиксировал, что некоторые вещества после нагревания становились тяже­лее. Тогда он предположил, что к этим веществам в процессе нагревания что-то добавляется. И последующий анализ результатов привел к определе­нию кислорода, к обобщению понятия «горение». Также процесс и резуль­тат моделирования дал объяснение многим известным явлениям и открыл новые возможности для исследований в других областях науки, например в биологии, так как кислород оказался основным компонентом дыхания и энергообмена флоры и фауны.

Моделирование - творческий процесс и заключить его в формальные рамки практически невозможно. Но можно выделить основные этапы мо­делирования. Все этапы определяются поставленной задачей и целями мо­делирования, поэтому какой-то этап может быть убран или усовершенство­ван, какой-то - добавлен.

Этапы моделирования

Рассмотрим этапы моделирования.

I этап. Постановка задачи.

Задача - это некоторая проблема, которую необходимо решить. Описание задачи

Проблема формулируется на обычном языке, и описание должно быть понятным. Главное - определить объект моделирования и представить ре­зультат.

Все задачи по характеру постановки делятся на две группы:

Первая группа - задачи, в которых требуется исследовать изменение ха­рактеристик объекта в данном диапазоне с некоторым шагом или исследовать, как изменятся характеристики объекта при некотором воздействии на него. Постановка такой задачи звучит так: «Что будет, если?..»

Например:

«Что будет, если увеличить плату за электроэнергию в два раза?»

«Как изменится скорость велосипедиста через 10 секунд, если он движет­ся прямолинейно и равноускоренно с начальной скоростью 2 м/с и ускоре­нием 0,5 м/с2?»

« В очереди стоит 3 человека. В течение следующих 5 минут подошли еще 6 человек. Далее очередь увеличивалась на 4 человека каждые 5 минут. Про­следить, каково будет общее количество человек в очереди через 15, 30 и т. д. минут».

Вторая группа - задачи, в которых необходимо выяснить, какое надо про­извести действие на объект, чтобы его параметры удовлетворяли некоторо­му заданному условию. Постановка такой задачи звучит так: «Как сделать, чтобы?..»

Например:

«Какой должна быть сила тяги, чтобы вывести космический аппарат на околоземную орбиту?»

«Какой должна быть скорость автомобиля при определенных начальных значениях времени пути и расстояния, чтобы он прибыл в пункт назначе­ния вовремя?»

«Каким должен быть вес объекта, чтобы он плавал на поверхности воды?»

«Каким должен быть прожиточный минимум, чтобы человек мог жить достойно?»

Цель моделирования

Цель показывает, для чего необходимо создать модель. Цели моделирова­ния менялись в ходе развития человеческого общества.

Несколько миллионов лет назад первобытные люди изучали окружающий мир, чтобы научиться противостоять природным стихиям, пользоваться природными ресурсами, выживать. Свой опыт они передавали последую­щим поколениям в виде моделей - устных описаний, словесных и мате­риальных моделей. Такие модели позволяли понять, как устроен объект, узнать его свойства, законы развития и как он взаимодействует с окружа­ющей средой. В этом случае цель моделирования заключалась в познании окружающего мира.


Накопив достаточно знаний, человек стал рассуждать о возможности создания объектов с заданными свойствами для того, чтобы противодейс­твовать стихиям или заставить природные явления служить себе. И он стал строить модели еще не существующих объектов. В результате родились идеи создания ветряных мельниц, различных механизмов и устройств. Некото­рые из этих моделей стали реальностью. Это объекты, созданные руками человека. Таким образом, можно определить следующую цель моделирова­ния - создание объектов с заданными свойствами: «Как сделать, чтобы...»

Например, постановка экономических, социальных и экологических проблем получила широкое распространение в современном обществе. Что будет, если увеличить плату за квартиру или плату за проезд? Что произой­дет в результате экологической катастрофы? Каковы последствия «ядерной зимы»?

Нередко целью моделирования бывает эффективное управление объек­том. В этом случае результат моделирования будет более эффективным, если будут удовлетворенны все стороны, участвующие в управлении. Например, как наладить управление в школе, чтобы и учителя и ученики чувствовали себя в ее стенах комфортно? Как организовать работу центров досуга, чтобы их посещали школьники и они не были убыточными?

Можно бесконечно рассматривать цели и перспективы моделирования и еще раз убедиться в том, что моделирование имеет огромное значение в формировании системно-информационной картины мира.

Анализ объекта

Анализ объекта подразумевает четкое выделение моделируемого объекта и его основных свойств. Этот процесс называется системным анализом, и мы его рассматривали.

Вспомним, что такое системный анализ.

Что такое «система»?

Что такое «компоненты системы»?

Что такое «свойства компонентов»?

Какие существуют взаимосвязи между компонентами системы?

В чем заключается суть принципа эмерджентности?

Пример 3

Системный анализ системы «самолет».

Компоненты системы: корпус, хвост, крылья и т. д.

Свойства компонентов: форма, размер и т. д.

Все компоненты системы связаны строго определенным образом. Связи можно изобразить в виде графа.

Суть принципа эмерджентности: компоненты системы в отдельности не обладают свойством полета. А система в целом способна летать.

II этап. Разработка модели

После того, как выполнен системный анализ объекта, можно приступать к построению его информационной модели.

Что такое информационная модель?

Каким образом классифицируются информационные модели?

Каковы этапы создания информационной модели?

Одним из основных действий при построении информационной моде­ли является сбор различной информации об объекте. В зависимости от того, с какой целью исследуется объект, какими средствами и знаниями обладает человек, будет получена разная по объему и содержанию инфор­мация.

Пример 4

Рассмотрим объект «растение» с точки зрения биолога, медика и уче­ника.

Биолог: сравнит растение с другими, известными ему; изучит корневую систему, стебель, клеточное строение, особенности почвы.

Медик: изучит химический состав с целью выявить полезные и вредные вещества растения для человека.

Ученик: зарисует внешний вид, запомнит запах, время, которое растение может простоять в воде, запомнит место обитания.

Пример 5

Рассмотрим объект «радуга» с точки зрения художника, физика и уче­ника.

Художник: обратит внимание на переходы между цветами.

Физик: объяснит это природное явление.

Ученик: поразится красотой и поделится впечатлениями.

Таким образом, и мы говорили об этом, один и тот же объект может иметь различные модели.

От чего это зависит?

Выбор наиболее существенной информации при создании информаци­онной модели и ее сложность обусловлены целью моделирования. Пост­роение информационной модели является отправным пунктом разработки модели.

Когда мы определились с объемом и содержанием данных, необходимых для построения информационной модели, а также определили все связи между компонентами объекта, можно представить информационную мо­дель в знаковой форме.

Знаковая форма может быть компьютерной или некомпьютерной. Лишь простые и знакомые по содержанию задачи можно решать с помощью тра­диционных способов. Сегодня, когда компьютер стал основным инстру­ментом исследователя, все предварительные наброски, формулы, чертежи и схемы составляются на нем с помощью различных программ.

При построении компьютерной модели необходимо правильно выбрать программную среду.

Если компьютер нужен вам как вспомогательное средство для реализа­ции своих замыслов, то для моделирования можно использовать приклад­ное программное обеспечение - текстовые редакторы, графические редак­торы и т. д.

Есть программные средства, которые обрабатывают исходную информа­цию, получают и анализируют результат. Здесь компьютер выступает как интеллектуальный помощник. В этом случае для моделирования можно использовать среду баз данных , электронных таблиц или языки програм­мирования.

Вывод: при моделировании на компьютере необходимо иметь представ­ление о классах программных средств, их назначении, инструментарии и технологии работы. Тогда легко можно преобразовать знаковую информа­ционную модель в компьютерную и провести эксперимент.

III этап. Компьютерный эксперимент

После того, как модель создана, необходимо выяснить ее работоспособ­ность или внедрить в производство. Для этого нужно провести экспери­мент.

До появления компьютеров все эксперименты проводились либо в лабора­торных условиях, либо на настоящем образце изделия. При этом натуральные и лабораторные эксперименты требовали больших затрат средств и времени. Образцы изделий подвергались различным нагрузкам и нередко разруша­лись. Хорошо. Если это часы или пылесос. А если самолет или ракета?

С развитием вычислительной техники появился новый метод исследова­ния - компьютерный эксперимент. Он основан на тестировании модели.

Тестирование - это процесс проверки правильности построения и функ­ционирования модели.

Тест - это набор исходных данных, для которых результат известен зара­нее.

Чтобы быть уверенным в правильности полученных результатов модели­рования, необходимо, чтобы тест соответствовал следующим параметрам;

1.Тест всегда должен быть ориентирован на проверку разработанного алгоритма функционирования компьютерной модели. Тест не отра­жает смыслового содержания модели, но полученные результаты мо­гут натолкнуть на мысль изменения исходной информационной или знаковой модели, где заложено смысловое содержание поставленной задачи.

2. Исходные данные в тесте могут совершенно не отражать реальную си­туацию. Важно то, чтобы при конкретных исходных данных заранее знать ожидаемый результат.

Пример 6

Математическая модель представлена в виде сложных математических формул. Ее необходимо протестировать. Вы подбираете несколько вариан­тов исходных данных и просчитывайте результат сами. Далее вводите те же данные в компьютер и получаете результат компьютерного эксперимента. Если он не совпадаете вашим, то надо искать и устранять причину.

IV этап. Анализ результатов моделирования

Конечный этап моделирования - принятие решения. Этот этап решаю­щий - либо вы заканчиваете исследование, либо продолжаете. Этап ана­лиза результатов не может существовать автономно. Полученные выводы часто приводят к проведению дополнительных экспериментов или изме­нению модели.

Основой для принятия решения служат результаты тестирования. Если они не соответствуют целям поставленной задачи, значит, были допущены ошибки на предыдущих этапах. Причины могут быть разными. Ошибки необходимо выявить и исправить. Процесс продолжается до тех пор, пока результаты эксперимента не станут отвечать целям моделирования.

Главное, надо всегда помнить: выявленная ошибка - тоже результат.

Постройте модель следующего процесса, соблюдая, по возможности, ос­новные этапы моделирования.

№1. Рассчитайте минимальное количество обоев и их стоимость, необходимое для оклейки жилой комнаты размером 4 х 4 х 2,5 метра. Рулон обоев имеет ширину 55 сантиметров и длину 10 метров.


Формальная модель - это модель, полученная в результате формализации.

Для решения задачи на компьютере больше всего подходит язык математики. В такой модели связь между исходными данными и конечными результатами фиксируется с помощью различных формул, а также накладываются ограничения на допустимые значения параметров.

Третий этап - разработка компьютерной модели начинается с выбора инструмента моделирования, другими словами, программной среды, в которой будет создаваться и исследоваться модель.
От этого выбора зависит алгоритм построения компьютерной модели, а также форма его представления. В среде программирования это программа , написанная на соответствующем языке. В прикладных средах (электронные таблицы, СУБД, графических редакторах и т. д.) это последовательность технологических приемов , приводящих к решению задачи.

Следует отметить, что одну и ту же задачу можно решить, используя различные среды. Выбор инструмента моделирования зависит, в первую очередь, от реальных возможностей, как технических, так и материальных.

Четвертый этап - компьютерный эксперимент включает две стадии: тестирование модели и проведение исследования.

  • Тестирование модели

На этой стадии проверяется разработанный алгоритм построения модели и адекватность полученной модели объекту и цели моделирования.

Для проверки правильности алгоритма построения модели используется тестовые данные, для которых конечный результат з а р а н е е и з в е с т е н. (Обычно его определяют ручным способом). Если результаты совпадают, то алгоритм разработан верно, если нет - надо искать и устранять причину их несоответствия.

Тестирование должно быть целенаправленным и систематизированным, а усложнение тестовых данных должно происходить постепенно. Чтобы убедиться, что построенная модель правильно отражает существенные для цели моделирования свойства оригинала, то есть является адекватной, необходимо подбирать тестовые данные, которые отражают р е а л ь н у ю ситуацию.

  • Исследование модели
    К этой стадии компьютерного эксперимента можно переходить только после того, как тестирование модели прошло успешно, и вы уверены, что создана именно та модель, которую необходимо исследовать.

Пятый этап - анализ результатов является ключевым для процесса моделирования. Именно по итогам этого этапа принимается решение: продолжать исследование или закончить.

Если результаты не соответствуют целям поставленной задачи, значит, на предыдущих этапах были допущены ошибки. В этом случае необходимокорректировать модель , то есть возвращаться к одному из предыдущих этапов. Процесс повторяется до тех пор, пока результаты компьютерного эксперимента не будут отвечать целям моделирования.

В предыдущих темах мы сформулировали, что такое модель, и определили новое понятие - моделирование. Важно понимать, что моделирование является одним из ключевых видов деятельности человека. Моделирование всегда в той или иной форме предшествует любому делу.

Рис. 4. От прототипа – к принятию решения.

Схема, представленная на рис. 4, показывает, что моделирование занимает центральное место в исследовании объекта. Оно позволяет обоснованно принимать решение: как совершенствовать привычные объекты, надо ли создавать новые, как изменять процессы управления и, в конечном итоге, - как менять окружающий нас мир в лучшую сторону.

Отправной пункт здесь - прототип (рис. 2.4). Им может быть существующий или проектируемый объект либо процесс.

Конечный этап моделирования - принятие решения. Во многих ситуациях нам приходится принимать то или иное решение. В моделировании это означает, что мы либо создаем новый объект, модель которого мы исследовали, либо улучшаем существующий, либо получаем о нем дополнительную информацию.

Моделирование - творческий процесс. Заключить его в формальные рамки очень трудно. В наиболее общем виде его можно представить поэтапно, как изображено на рис. 5. Каждый раз при решении конкретной задачи такая схема может подвергаться некоторым изменениям: какой-то блок будет убран или усовершенствован, какой-то - добавлен. Все этапы определяются поставленной задачей и целями моделирования.

I этап. Постановка задачи

Описание задачи

Цель моделирования

Анализ объекта

II этап. Разработка модели

Информационная модель

Знаковая модель

Компьютерная модель

III этап. Компьютерный эксперимент

План моделирования

Технология моделирования

IV этап. Анализ результатов моделирования

Результаты соответствуют цели

Результаты не соответствуют цели

Рассмотрим основные этапы моделирования подробнее.

3.2. I этап. Постановка задачи

Под задачей в самом общем смысле этого слове понимается некая проблема, которую надо решать. На этапе постановки задачи необходимо отразить три основных момента: описание задачи, определение целей моделирования и анализ объекта или процесса.

Описание задачи

Задача (проблема) формулируется на обычном языке, и описание должно быть понятным. Главное здесь - определить объект моделирования и понять, что собой должен представлять результат. От того, как будет понята проблема, зависит результат моделированияи, в конечном итоге, принятие решения.

По характеру постановки все задачи можно разделить на две основные группы.

К первой группе можно отнести задачи, в которых требуется исследовать, как изменятся характеристики объекта при некотором воздействии на него. Такую постановку задачи принято называть «что будет, если?». Например, как изменится скорость автомобиля через 6 с, если он движется прямолинейно и равноускоренно с начальной скоростью 3 м/с и ускорением 0, 5 м/с 2

Иногда задачи формулируются несколько шире. Что будет, если изменять характеристики объекта в заданном диапазоне с некоторым шагом? Такое исследование помогает проследить зависимость параметров объекта от исходных данных. Например, модель информационного взрыва:

«Один человек увидел НЛО и в течение следующих 15 минут рассказал об этом трем своим знакомым. Те в свою очередь еще через 15 минут сообщили о новости еще трем своим знакомым каждый и т. д. Проследить, каково будет количество оповещенных через 15, 30 и т. д. минут».

Вторая группа задач имеет такую обобщенную формулировку: какое надо произвести воздействие на объект, чтобы его параметры удовлетворяли некоторому заданному условию? Такая постановка задачи часто называется «как сделать, чтобы?..». Например, какого объема должен быть воздушный шар, наполненный газом гелием, чтобы он мог подняться с грузом 100 кг?

Наибольшее количество задач моделирования, как правило, являются комплексными. Например, задача изменения концентрации раствора: «Химический раствор объемом 5 частей имеет начальную концентрацию 70%. Сколько частей воды надо добавить, чтобы получить раствор заданной концентрации?». Сначала проводится расчет концентрации при добавлении 1 части воды. Затем строится таблица концентраций при добавлении 2, 8, 4... частей воды. Полученный расчет позволяет быстро пересчитывать модель с разными исходными данными. По расчетным таблицам можно дать ответ на поставленный вопрос: сколько частей воды надо добавить для получения требуемой концентрации.

Цель моделирования

Зачем человек создает модели?

Если модели позволяют понять, как устроен конкретный объект, узнать его основные свойства, установить законы его развития и взаимодействия с окружающим миром, то в этом случае целью построения моделей является познание окружающего мира.

Другая важная цель моделирования - создание объектов с заданными, свойствами. Эта цель определяется постановкойзадачи «как сделать, чтобы...».

Цель моделирования задач типа «что будет, если...» - определение последствий воздействия на объект и принятие правильного решения. Подобное моделированиеимеет большое значение при обращении к социальным и др. проблемам.

Нередко целью моделирования бывает эффективность управления объектом (или процессом) .

Анализ объекта

На этом этапе, отталкиваясь от общей формулировки задачи, четко выделяют моделируемый объект и его основные свойства. По сути, все эти факторы можно назвать входными параметрами моделирования. Их может быть довольно много, причем некоторые невозможно описать количественными соотношениями.

Очень часто исходный объект - это целая совокупность более мелких составляющих, находящихся в некоторой взаимосвязи. Слово «анализ» (от греч. «analysis») означает разложение, расчленение объекта с целью выявления составляющих, называемых элементарными объектами. В результате появляется совокупность более простых объектов. Они могут находиться между собой либо в равноправной связи либо во взаимном подчинении. Схемы таких связей представлены на рис. 6 и 7.

Есть объекты и с более сложными взаимосвязями. Как правило, сложные объекты могут состоять из более простых с разными видами взаимосвязей.

В основу любой серьезной работы (будь то конструкторская разработка или проектирование технологического процесса, разработка алгоритмаили моделирование) должен быть положен системный принцип «сверхувниз», т. е. от общих проблем к конкретным деталям. Результат анализа объекта появляется в процессе выявления его составляющих (элементарных объектов) и определения связей между ними.

Прежде чем построить модель объекта (явления, процесса), необходимо выделить составляющие его элементы и связи между ними (провести системный анализ) и «перевести» (отобразить) полученную структуру в какую-либо заранее определенную форму – формализовать информацию.

Моделирование любой системы невозможно без предварительной формализации. По сути, формализация – это первый и очень важный этап процесса моделирования. Модели отражают самое существенное в изучаемых объектах, процессах и явлениях, исходя из поставленной цели моделирования. В этом главная особенность и главное назначение моделей.

Формализация – это процесс выделения и перевода внутренней структуры предмета, явления или процесса в определенную информационную структуру – форму.

Например, из курса географии вы знаете, что силу подземных толчков принято измерять по десятибалльной шкале. По сути, мы имеем дело с простейшей моделью оценки силы этого природного явления. Действительно, отношение «сильнее», действующее в реальном мире, здесь формально заменено на отношение «больше», имеющее смысл во множестве натуральных чисел: слабейшему подземному толчку соответствует число 1, сильнейшему – 10. Полученное упорядоченное множество из 10 чисел – это модель, дающая представление о силе подземных толчков.

Этапы моделирования

Прежде чем браться за какую-либо работу, нужно четко представить себе отправной и каждый пункт деятельности, а также примерные ее этапы. То же самое можно сказать и о моделировании. Отправной пункт здесь - прототип. Им может быть существующий или проектируемый объект или процесс. Конечный этап моделирования - принятие решения на основании знаний об объекте.

(В моделировании отправным пунктом считается – прототип , который может быть только существующий или проектируемый объект или процесс. Конечным этапом моделирования считается принятие решения на основании знаний об объекте.)

Цепочка выглядит следующим образом.

Поясним это на примерах.

Примером моделирования при создании новых технических средств может служить история развития космической техники. Для реализации космического полета надо было решить две проблемы: преодолеть земное притяжение и обеспечить продвижение в безвоздушном пространстве. О возможности преодоления притяжения Земли говорил еще Ньютон в XVII веке. К. Э. Циолковский пред­ложил для передвижения в пространстве создать реактивный двигатель, где используется топливо из смеси жидкого кислорода и водорода, выде­ляющих при сгорании значительную энергию. Он составил довольно точную описательную модель будущего межпланетного корабля с черте­жами, расчетами и обоснованиями.

Не прошло и полувека, как описательная модель К. Э. Циолковско­го стала основой для реального моделирования в конструкторском бюро под руководством С. П. Королева. В натурных экспериментах испыты­вались различные виды жидкого топлива, форма ракеты, система управления полетом и жизнеобеспечения космонавтов, приборы для научных исследований и т. п. Результатом разностороннего моделиро­вания стали мощные ракеты, которые вывели на околоземное простран­ство искусственные спутники земли, корабли с космонавтами на борту и космические станции.

Рассмотрим другой пример. Известный химик XVIII века Антуан Лавуазье, изучая процесс горения, производил многочисленные опы­ты. Он моделировал процессы горения с различными веществами, ко­торые нагревал и взвешивал до и после опыта. При этом выяснилось, что некоторые вещества после нагревания становятся тяжелее. Лавуа­зье предположил, что к этим веществам в процессе нагревания что-то добавляется. Так моделирование и последующий анализ результатов привели к определению нового вещества - кислорода, к обобщению понятия «горение», дали объяснение многим известным явлениям и открыли новые горизонты для исследований в других областях науки, в частности в биологии, т. к. кислород оказался одним из основных компонентов дыхания и энергообмена животных и растений.

Моделирование - творческий процесс. Заключить его в формаль­ные рамки очень трудно. В наиболее общем виде его можно представить поэтапно, как изображено на рис. 1.



Рис. 1. Этапы моделирования.

Каждый раз при решении кон­кретной задачи такая схема может подвергаться некоторым изменени­ям: какой-то блок будет убран или усовершенствован, какой-то - до­бавлен. Все этапы определяются поставленной задачей и целями моделирования. Рассмотрим основные этапы моделирования подробнее.

ЭТАП. ПОСТАНОВКА ЗАДАЧИ.

Под задачей понимается некая про­блема, которую надо решить. На этапе постановки задачи необходимо отразить три основных момента: описание задачи, определение целей моделирования и анализ объекта или процесса.

Описание задачи

Задача формулируется на обычном языке, и описание должно быть понятным. Главное здесь - определить объект моделиро­вания и понять, что собой должен представлять результат.

Цель моделирования

1) познание окружающего мира

Зачем человек создает модели? Чтобы ответить на этот вопрос, надо заглянуть в далекое прошлое. Несколько миллионов лет назад, на заре человечества, первобытные люди изучали окружающую природу, чтобы научиться противостоять природным стихиям, пользоваться природными благами, просто выжи­вать.

Накопленные знания передавались из поколения в поколение устно, позже письменно и наконец с помощью предметных моделей. Так роди­лась, к примеру, модель Земного шара - глобус - позволяющая получить нагляд­ное представление о форме нашей плане­ты, ее вращении вокруг собственной оси и расположении материков. Такие моде­ли позволяют понять, как устроен конкретный объект, узнать его основные свой­ства, установить законы его развития и взаимодействия с окружающим миром моделей.

(На протяжении веков человек создавал модели, накапливал знания и передавал их из поколения в поколение устным, позже письменно и наконец, с помощью предметных моделей. Такие моде­ли позволяют понять, как устроен конкретный объект, узнать его основные свой­ства, установить законы его развития и взаимодействия с окружающим миром моделей. *Пример: модель Земного шара*).

2) создание объектов с заданными свойствами ( определяется постановкой задачи «как сделать, чтобы...».

Накопив достаточно знаний, человек задал себе вопрос: «Нельзя ли создать объект с заданными свойствами и возможностями, чтобы проти­водействовать стихиям или ставить себе на службу природные явле­ния?» Человек стал строить модели еще не существующих объектов. Так родились идеи создания ветряных мельниц, различных механиз­мов, даже обыкновенного зонтика. Многие из этих моделей стали в на­стоящее время реальностью. Это объекты, созданные руками человека.

(Накопив достаточно знаний, у человека возникло желание создать объект с заданными свойствами и возможностями, *чтобы проти­водействовать стихиям или ставить себе на службу природные явле­ния* чтобы облегчить свою жизнь, и защитить себя от разрушительных действии природы. Человек стал строить модели еще не существующих объектов. Многие из этих моделей стали в на­стоящее время реальностью. Это объекты, созданные руками человека.) *Пример: ветряные мельницы, различные механиз­мы, даже обыкновенный зонтик*

3) определение последствий воздействия на объект и принятие правильного решения . Цель моделирования задач типа «что будет, если...». (что будет, если увеличить плату за проезд в транспорте, или что произойдет, если закопать ядерные отходы в такой-то местности?)

Например, для спасения города на Неве от постоянных наводне­ний, приносящих огромный ущерб, решено было возвести дамбу. При ее проектировании было построено множество моделей, в том числе и натурных, именно для того, чтобы предсказать последствия вмеша­тельства в природу.

В данном пункте можно привести только пример и сказать про вопрос.

4) эффективность управления объектом (или процессом ) .

Поскольку критерии управления бывают весьма противоречивыми, то эффективным оно окажется только при условии, если будут «и волки сыты и овцы целы».

Например, нужно наладить питание в школьной столовой. С одной стороны, оно должно отвечать возрастным требованиям (калорийное, содержащее витамины и минеральные соли), с другой - нравиться большинству ребят и к тому же быть «по карману» родителям, а с третьей - технология приготовления должна соответствовать возмож­ностям школьных столовых. Как совместить несовместимое? Построе­ние модели поможет найти приемлемое решение.

Если кому-то информация в этом п. покажется важной, то сами выберете.

Анализ объекта

На этом этапе четко выделяют моделируемый объект и его основные свойства, из чего он состоит, какие существуют связи между ними.

(Простой пример подчиненных связей объектов - разбор предложения. Сначала выделяются главные члены (подлежащее, ска­зуемое), затем второстепенные члены, относящиеся к главным, затем слова, относящиеся к второстепенным, и т. д.)

II ЭТАП. РАЗРАБОТКА МОДЕЛИ

1. Информационная модель

На этом этапе выясняются свойства, состояния, действия и другие характеристики элементарных объектов в любой форме: устно, в виде схем, таблиц. Формируется представление об элементарных объектах, составляющих исходный объект, т. е. информационная модель .

Модели должны отражать наиболее существенные признаки, свой­ства, состояния и отношения объектов предметного мира. Именно они дают полную информацию об объекте.

Представьте себе, что нужно отгадать загадку. Вам предлагают перечень свойств реального предмета: круглое, зеле­ное, глянцевое, прохладное, полосатое, звонкое, зрелое, ароматное, сладкое, сочное, тяжелое, крупное, с сухим хвостиком...

Список можно продолжать, но вы, наверное, уже догадались, что речь идет об арбузе. Информация о нем дана самая разнообразная: и цвет, и запах, и вкус, и даже звук... Очевидно, ее гораздо больше, чем требуется для решения этой задачи. Попробуйте выбрать из всех пере­численных признаков и свойств минимум, по­зволяющий безошибочно определить объект. В русском фольклоре давно найдено решение: «Сам алый, сахарный, кафтан зеленый, бархат­ный».

Если бы информация предназначалась художнику для написания натюрморта, можно было ограничиться следующими свойствами объек­та: круглый, большой, зеленый, полосатый . Чтобы вызвать аппетит у сладкоежки выбрали бы другие свойства: зрелый, сочный, ароматный, сладкий . Для человека, выбирающего арбуз на бахче, можно было бы предложить следующую модель: крупный, звонкий, с сухим хвостиком.

Этот пример показывает, что информации не обязательно должно быть много. Важно, чтобы она была «по существу вопроса», т. е. соответствовала цели, для которой используется.

Например, в школе учащиеся знакомятся с информационной моделью кровообращения. Этой информации достаточно для школьника, но мало для тех, кто проводит операции на сосудах в больницах.

Информационные модели играют очень важную роль в жизни че­ловека.

Знания, получаемые вами в школе, имеют вид информационной модели, предназначенной для целей изучения предметов и явлений.

Уроки истории дают возможность построить модель развития обще­ства, а знание ее позволяет строить собственную жизнь, либо повторяя ошибки предков, либо учитывая их.

На уроках географии вам сообщают информацию о географических объектах: горах, реках, странах и пр. Это тоже информационные моде­ли. Многое, о чем рассказывается на занятиях по географии, вы никог­да не увидите в реальности.

На уроках химии информация о свойствах разных веществ и о зако­нах их взаимодействия подкрепляется опытами, которые есть не что иное, как реальные модели химических процессов.

Информационная модель никогда не характеризует объект полностью. Для одного и того же объекта можно построить различные информационные модели.

Выберем для моделирования такой объект, как «человек». Челове­ка можно рассмотреть с различных точек зрения: как отдельного ин­дивидуума и как человека вообще.

Если иметь в виду конкретного человека, то можно построить моде­ли, которые представлены в табл. 1-3.

Таблица 1. Информационная модель ученика

Таблица 2.. Информационная модель посетителя школьного медкабинета

Таблица 3. Информационная модель работника предприятия

Рассмотрим и другие примеры различных информационных моде­лей для одного и того же объекта.

Многочисленные свидетели преступления сообщили разнообразную информацию о предполагаемом злоумышленнике - это их информа­ционные модели. Представителю милиции следует выбрать из потока сведений наиболее существенные, которые помогут найти преступника и задержать его. У представителя закона может сложиться не одна информационная модель бандита. От того, насколько правильно будут выбраны существенные черты и отброшены второстепенные, зависит успех дела.

Выбор наиболее существенной информации при создании информационной модели и ее сложность обусловлены целью моделирования.

Построение информационной модели является отправным пунктом этапа разработки модели. Все входные параметры объектов, выделенные при анализе, распо­лагают в порядке убывания значимости и проводят упрощение модели в соответствии с целью моделирования.

2. Знаковая модель

Прежде чем приступить к процессу моделирова­ния, человек делает предварительные наброски чертежей либо схем на бумаге, выводит расчетные формулы, т. е. составляет информационную модель в той или иной знаковой форме , которая может быть либо компьютерной, либо некомпьютерной.

Компьютерная модель

Компьютерная модель – это модель, реализованная средствами программной среды.

Существует множество программных комплексов, которые позволяют проводить исследование (моделирование) инфор­мационных моделей. Каждая программная среда имеет свой инструментарий и позволяет ра­ботать с определенными видами информационных объектов.

Человек уже знает, какова будет модель, и исполь­зует компьютер для придания ей знаковой формы. Например, для построения геометрических моделей, схем используются графические среды, для словесных или табличных описаний - среда текстового редактора.

III ЭТАП. КОМПЬЮТЕРНЫЙ ЭКСПЕРИМЕНТ

Чтобы дать жизнь новым конструкторским разработкам, внедрить но­вые технические решения в производство или проверить новые идеи, нужен эксперимент. В недалеком прошлом такой эксперимент можно было провести либо в лабораторных условиях на специально создавае­мых для него установках, либо на натуре, т. е. на настоящем образце изделия, подвергая его всяческим испытаниям

С развитием вычислительной техники появился новый уникальный метод исследования – компьютерный эксперимент. Компьютерный эксперимент включает последовательность работы с моделью, совокупность целенаправленных действий пользователя над компьютерной моделью.

IV ЭТАП. АНАЛИЗ РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИЯ

Конечная цель моделирования - принятие решения, которое должно быть выработано на основе всестороннего анализа полученных резуль­татов. Этот этап решающий - либо вы продолжаете исследование, либо заканчиваете. Возможно, вам известен ожидаемый результат, тогда необходимо сравнить полученный и ожидаемый результаты. В случае совпадения вы сможете принять решение.

Основой для выработки решения служат результаты тестирования и экспериментов.Если результаты не соответствуют целям поставленной задачи, значит, допущены ошибки на предыдущих этапах. Это может быть слишком упрощенное построение информационной модели, либо неудачный выбор метода или среды моделирования, либо нарушение технологических приемов при построении модели. Если такие ошибки выявлены, то требуется корректировка модели, т. е. возврат к одному из предыдущих этапов. Процесс повторяется до тех пор, пока результаты эксперимента не будут отвечать целям моделирования.

Главное, надо всегда помнить: выявленная ошибка - тоже резуль­тат. http://www.gmcit.murmansk.ru/text/information_science/base/simulation/materials/mysnik/2.htm


Похожая информация.


Каждый этап моделирования определяет поставленная задача и цели моделирования. В общем случае процесс построения и исследования модели может быть представлен с помощью схемы:

I этап. Постановка задачи

Включает в себя три стадии:

    Описание задачи

    Задача описывается на обычном языке.

    Все множество задач можно разделить по характеру постановки на 2 основные группы:

    1. Первая группа содержит задачи, в которых требуется исследовать, как изменятся характеристики объекта при некотором воздействии на него, т.е. требуется получить ответ на вопрос «Что будет, если?...».

      Например, что будет, если магнитную карточку положить на холодильник? Что будет, если повысить требования для поступления в вуз? Что будет, если резко повысить плату за коммунальные услуги? и т. п.

      Вторая группа содержит задачи, в которых требуется определить, что нужно сделать с объектом, чтобы его параметры удовлетворили определенное заданное условие, т.е. требуется получить ответ на вопрос «Как сделать, чтобы?..».

      Например, как построить урок математики, чтобы детям был понятен материал? Какой режим полета самолета выбрать, чтобы полет был безопаснее и экономически выгоднее? Как составить график выполнения работ на строительстве, чтобы оно было закончено максимально быстро?

    Определение цели моделирования

    На этой стадии среди многих характеристик (параметров) объекта выделяются наиболее существенные. Один и тот же объект при разных целях моделирования будет иметь разные существенные свойства.

    Например, при построении модели яхты для участия в соревнованиях моделей судов, существенными будут ее судоходные характеристики. Для достижения поставленной цели построения модели будет отыскиваться ответ на вопрос «Как сделать, чтобы…?»

    При построении модели яхты для совершения на ней путешествий, долгосрочных круизов, кроме судоходных характеристик существенным будет ее внутреннее строение : количество палуб, комфортабельность кают, наличие других удобств и т.д.

    При построении компьютерной имитационной модели яхты для проверки надежности ее конструкции в штормовых условиях, моделью яхты будет представлять собой изменение изображения и расчетных параметров на экране монитора при изменении значений входных параметров. Будет решаться задача «Что будет, если…?»

    Цель моделирования позволяет установить, какие данные будут исходными, чего нужно достичь в результате и какие свойства объекта можно не учитывать.

    Таким образом происходит построение словесной модели задачи.

    Анализ объекта

    Подразумевается четкое выделение объекта, который моделируется, и его основных свойств.

II этап. Формализация задачи

Связан с созданием формализованной модели, т.е. модели, которая записана на каком-либо формальном языке. Например, показатели рождаемости, которые представлены в виде таблицы или диаграммы, являются формализованной моделью.

Под формализацией понимают приведение существенных свойств и признаков объекта моделирования к определенной форме.

Формальной моделью является модель, которая получена в результате формализации.

Замечание 1

Для решения задач с помощью компьютера наиболее подходящим является математический язык. Формальная модель фиксирует связи между исходными данными и конечным результатом с помощью разных формул, а также наложения ограничений на допустимые значения параметров.

III этап. Разработка компьютерной модели

Начинается с выбора инструмента моделирования (программной среды), с помощью которого будет создаваться и исследоваться модель.

От выбора программной среды зависит алгоритм построения компьютерной модели и форма его представления.

Например, в среде программирования формой представления является программа, которая написана на соответствующем языке. В прикладных средах (электронные таблицы, СУБД, графических редакторах и т.д.) формой представления алгоритма является последовательность технологических приемов, которые приводят к решению задачи.

Заметим, что одну и ту же задачу можно решить с помощью разных программных сред, выбор которой зависит, в первую очередь, от ее технических и материальных возможностей.

IV этап. Компьютерный эксперимент

Включает 2 стадии:

    Тестирование модели – проверка правильности построения модели.

    На этой стадии выполняется проверка разработанного алгоритма построения модели и адекватности полученной модели объекту и цели моделирования.

    Замечание 2

    Для проверки правильности алгоритма построения модели используются тестовые данные, для которых заранее известен конечный результат. Чаще всего тестовые данные определяются ручным способом. Если в ходе проверки результаты совпадают, значит разработан правильный алгоритм, а если нет – то нужно найти и устранить причину их несоответствия.

    Тестирование должно отличаться целенаправленностью и систематизацией, усложнение же тестовых данных должно выполняться постепенно. Для определения правильности построения модели, которая отражает существенные для цели моделирования свойства оригинала, т.е. ее адекватности, необходим подбор таких тестовых данных, которые будут отражать реальную ситуацию.

    Исследование модели

    К исследованию модели можно переходить только после успешного прохождения тестирования и уверенности в том, что создана именно та модель, которую необходимо исследовать.

V этап. Анализ результатов

Является основным для процесса моделирования. Решение о продолжении или завершении исследования принимается по итогам именно этого этапа.

В случае, когда результаты не соответствуют целям поставленной задачи, делают вывод о том, что на предыдущих этапах были допущены ошибки. Тогда необходимо выполнить коррекцию модели, т.е. вернуться к одному из предыдущих этапов. Процесс должен повторяться до тех пор, пока результаты компьютерного эксперимента не будут соответствовать целям моделирования.