Расчет вероятности объединения (логической суммы) событий. Теория вероятностей. Базовые термины и понятия Случайные величины и законы их распределения

1. Изложение основных теорем и формул вероятностей: теорема сложения, условная вероятность, теорема умножения, независимость событий, формула полной вероятности.

Цели: создание благоприятных условий для введения понятия вероятности события; знакомство с основными теоремами и формулами теории вероятностей; ввести формулу полной вероятности.

Ход занятия:

Случайным экспериментом (опытом) называют процесс, при котором возможны различные исходы, причем заранее нельзя предсказать, каков будет результат. Возможные исключающие друг друга исходы опыта называются его элементарными событиями . Множество элементарных событий обозначим через W.

Случайным событием называется событие, о котором нельзя заранее сказать, произойдет оно в результате опыта или нет. Каждому случайному событию А, происшедшему в результате опыта, можно поставить в соответствие группу элементарных событий из W. Элементарные события, входящие в состав этой группы, называют благоприятствующими появлению события А.

Множество W также можно рассматривать как случайное событие. Поскольку оно включает все элементарные события, то обязательно произойдет в результате опыта. Такое событие называют достоверным .

Если для данного события нет благоприятствующих элементарных событий из W, то и результате опыта оно произойти не может. Такое событие называют невозможным.

События называют равновозможными , если в результате испытания обеспечиваются равные возможности осуществления этих событий. Два случайных события называются противоположными , если в результате проведения опыта одно из них происходит тогда и только тогда, когда не происходит другое. Событие, противоположное событию А, обозначают .

События А и В называют несовместными , если появление одного из них исключает появление другого. События А 1 , А 2 , ..., А n называют попарно несовместными, если любые два из них несовместны. События А 1 , А 2 , ..., Аn образуют полную систему попарно несовместных событий , если в результате испытания обязательно произойдет одно и только одно из них.

Суммой (объединением) событий А 1 , А 2 , ..., А n называется такое событие С, которое состоит в том, что произошло хотя бы одно из событий А 1 , А 2 , ..., А n Сумма событий обозначается следующим образом:

C = A 1 +A 2 +…+A n .

Произведением (пересечением) событий А 1 , А 2 , ..., А n называется такое событие П, которое состоит в том, что одновременно произошли все события А 1 , А 2 , ..., А n . Произведение событий обозначается

Вероятность Р(А) в теории вероятностей выступает как числовая характеристика степени возможности появления какого-либо определенного случайного события А при многократном повторении испытаний.



Допустим, при 1000 бросаний игральной кости цифра 4 выпадает 160 раз. Отношение 160/1000 = 0,16 показывает относительную частоту выпадений цифры 4 в данной серии испытаний. В более общем случае частотой случайного события А при проведении серии опытов называют отношение числа опытов, в которых произошло данное событие, к общему числу опытов:

где Р*(А) - частота события А; m - число опытов, в которых произошло событие А; n - общее число опытов.

Вероятностью случайного события А называют постоянное число, около которого группируются частоты данного события по мере увеличения количества опытов (статистическое определение вероятности события ). Вероятность случайного события обозначают Р(А).

Естественно, что никто и никогда не сможет проделать неограниченное число испытаний для того, чтобы определить вероятность. В этом нет и необходимости. Практически за вероятность можно принять частоту события при большом числе испытаний. Так, например, из статистических закономерностей рождения, установленных за много лет наблюдений, вероятность того события, что новорожденный будет мальчиком, оценивается в 0,515.

Если при испытании нет каких-либо причин, вследствие которых одно случайное событие появилось бы чаще других (равновозможные события ), можно определить вероятность исходя из теоретических соображений. Например, выясним в случае бросания монеты частоту выпадения герба (событие А). разными экспериментаторами при нескольких тысячах испытаний было показано, что относительная частота такого события принимает значения, близкие к 0,5. учитывая, что появление герба и противоположной стороны монеты (событие В) являются событиями равновозможными, если монета симметрична, суждение Р(А)=Р(В)=0,5 можно было бы сделать и без определения частоты этих событий. На основе понятия «равновозможности» событий формулируется другое определение вероятности.

Пусть рассматриваемое событие А происходит в m случаях, которые называются благоприятствующими А, и не происходит при остальных n-m, неблагоприятствующих А.

Тогда вероятность события А равна отношению количества благоприятствующих ему элементарных событий к их общему числу (классическое определение вероятности события ):

где m - количество элементарных событий, благоприятствующих событию А; n - Общее количество элементарных событий.

Рассмотрим несколько примеров:

Пример №1: В урне находится 40 шаров: 10 черных и 30 белых. Найти вероятность того, что наугад выбранный шар будет черным.

Число благоприятствующих случаев равно числу черных шаров в урне: m = 10. общее число равновозможных событий (вынимание одного шара) равна полному числу шаров в урне: n = 40. Эти события несовместны, так как вынимается один и только один шар. Р(А) = 10/40 = 0,25

Пример №2: найти вероятность выпадения четного числа при бросании игральной кости.

При бросании кости реализуется шесть равновозможных несовместных событий: появление одной цифры:1,2,3,4,5 или 6, т.е. n = 6. благоприятствующими случаями являются выпадение одной из цифр 2,4 или 6: m = 3. искомая вероятность Р(А) = m/N = 3/6 = ½.

Как видим из определения вероятности события, для всех событий

0 < Р(А) < 1.

Очевидно, что вероятность достоверного события равна 1, вероятность невозможного события равна 0.

Теорема сложения вероятностей: вероятность появления одного (безразлично какого) события из нескольких несовместных событий равна сумме их вероятностей.

Для двух несовместных событий А и В вероятностей этих событий равна сумме их вероятностей:

Р(А или В)=Р(А) + Р(В).

Пример №3: найти вероятность выпадения 1 ил 6 при бросании игральной кости.

Событие А (выпадение 1) и В(выпадение 6) являются равновозможными: Р(А) = Р(В) = 1/6, поэтому Р(А или В) = 1/6 + 1/6 = 1/3

Сложение вероятностей справедливо не только для двух, но и для любого числа несовместных событий.

Пример №4: в урне находится 50 шаров: 10 белых, 20 черных, 5 красных и 15 синих. Найти вероятность появления белого, или черного, или красного шара при однократной операции изъятия шара из урны.

Вероятность вынимания белого шара (событие А) равна Р(А) = 10/50 = 1/5, черного шара (событие В) равна Р(В) = 20/50 = 2/5 и красного шара (событие С) равно Р(С) = 5/50 = 1/10. Отсюда по формуле сложения вероятностей получим Р(А или В или С) = Р(А) +Р(В) =Р(С) = 1/5 + 2/5 + 1/10 = 7/10

Сумма вероятностей двух противоположных событий, как следует из теоремы сложения вероятностей, равна единице:

Р(А) + Р() = 1

В выше рассмотренном примере вынимание белого, черного и красного шара будет событием А 1 , Р(А 1) = 7/10. Противоположным событием 1 является доставание синего шара. Так как синих шаров 15, а общее количество шаров 50, то получаем Р( 1) = 15/50 = 3/10 и Р(А) + Р() = 7/10 +3/10 = 1.

Если события А 1 , А 2 , ..., А n образуют полную систему попарно несовместных событий, то сумма их вероятностей равна 1.

В общем случае вероятность суммы двух событий А и В вычисляется как

Р(А+В) = Р(А) + Р(В) - Р (АВ).

Теорема умножения вероятностей:

События А и В называются независимыми , если вероятность появления события А не зависит от того, произошло событие В или нет, и наоборот, вероятность появления события В не зависит от того, произошло событие А или нет.

Вероятность совместного появления независимых событий равна произведению их вероятностей . Для двух событий Р(А и В)=Р(А)·Р(В).

Пример: В одной урне 5 черных и 10 белых шаров, в другой 3 черных и 17 белых. Найти вероятность того, что при первом вынимании шаров из каждой урны оба шара окажутся черными.

Решение: вероятность вытаскивания черного шара из первой урны (событие А) – Р(А) = 5/15 = 1/3, черного шара из второй урны (событие В) – Р(В) = 3/20

Р(А и В)=Р(А)·Р(В) = (1/3)(3/20) = 3/60 = 1/20.

На практике нередко вероятность события В зависит оттого, произошло некоторое другое событие А или нет. В этом случае говорят об условной вероятности , т.е. вероятности события В при условии, что событие А произошло. Условную вероятность обозначают P(B/A).

*Событие

*Вероятность события

СПОСОБЫ НЕПОСРЕДСТВЕННОГО ВЫЧИСЛЕНИЯ ВЕРОЯТНОСТЕЙ .

Классический

Если исходы опыта можно представить в виде полной группы событий кот несовместны и равновозможны,то вероятность события А м.б. вычислена по формуле:

Р(А)=m:n

m-общее число возможных случаев(общ число случаев)

n-число исходов благоприятствующих событию А(общ число благопр случаев)

благоприятствующий случай- если его появление влечет за собой событие

пример:

1) №:в урне 3 белых и 4 черных шара

А-событие вынуть белый шар.

Р(А)=m:n=3:7-0,43(43%)

2) Вероятность появл-я четного числа очков при однокр брос кости

А-событие выпад-я четн числа очков

Р(А)=m:n=3:6=0,5(50%)

m-благопр случай 3(2,4,6-четн цифры на кости)

n=6(всего цифр)

Геометрический

Исп-ся д/вычисл вероятностей события в том случае,когда рез-т испыт-я определ-ся случайным полож-ем точек в некот обл-ти,причем любые полож-я точек в этой обл-ти равновозможны.

Wm-размер всей площади

Wn-мера обл-ти,попад в кот благоприятствует событию А.

Примечание:

Единицы измерения обл-тей м.б. самые различн,в завис-ти от смысла задачи(S,V,t)

пример:

1) В некот точке С телеф линии АВ длиной L. Определ вероятность того,что С удал от А на расст не <,чем l

А-событие,что произошло в т.С→Р(А)

Р(А)= Wm:Wn=(L-l):L

Статистический

Частотой появл-я события А назыв отношение числа его появл-й к числу произвед опытов

P(A)=lim f(A) (внизу под lim n→∞)=lim m:n(внизу под lim n→∞)

Основные элементы комбинаторики: перестановки, размещения, сочетания.

*Событие – результат (исход) испытания.

*Вероятность события -число характеризующее степень объективной возможности появл-я событий в опыте.

Комбинаторика -спец раздел мат-ки интересующийся? «Сколько различн комбинаций можно сост из задан объектов.

Рассм 3 типа комбинаторики:

Перестановка

Перестановками из n элементов назыв всевозм комбинации из этих элементов,отлич друг от друга порядком располож-я элементов.

Рn=1×2×3…×n=n!(эн-факториал)

Пример:

123; 321; 231; 213; 132; 312

Р 3 =3!=1×2×3=6 Ответ:6

2) В ауд 5 столов. Сколькими способами м рассад 5 чел.

Р 5 =5!=120. Ответ: 120

Размещение

Размещениями из n элементов по m элементов называются все возможные комбинации (группы) из этих элементов, содержащие по m элементов в каждой и различающиеся между собой элементами или их расположением.

А n m =n(n-1)(n-2)…(n-m+1)

А n m =P n:P m - n

Пример:

1) Информация кодируется словами из 4 цифр,цифры в словах не повтор. Сколько м сост слов д/кодир-я информ.

n=10 (0,1,2..9), m=4

A 10 4 =10!:(10-4+1!)=10×9×8×7=5040

Ответ: 5040

3. Сочетания

Сочетаниями из n элементов по m элементов (m <n ) называются все возможные комбинации (группы) из этих элементов, содержащие по m элементов в каждой и отличающиеся друг от друга, по крайней мере, одним элементом.

С n m = А n m: P m =n!:(m!×(n-m)!)

n!-кол-во чисел

m!×(n-m)!-кол-во групп

пример:

1) в урне 3 белых и 7 черных шаров.Скольк сущ возм-тей вынуть из урны 2 шара одного цвета?

C 3 2 -число возм-тей вытянуть 2 белых шара

C 3 2 =3!:(2!1!)=3

C 7 2 -число возм-тей вытянуть 2 черных шара

С=C 3 2 +C 7 2 =21+3=24. Ответ: 24

Сумма событий. Теорема сложения вероятностей и следствия из нее.

*Событие – результат (исход) испытания.

*Вероятность события -число характеризующее степень объективной возможности появл-я событий в опыте.

Теорема сложения.

Суммой 2х событий А и В называют событие С состоящее в появлении хотя бы одного из событий А ИЛИ В

Пример:

1) А-событие вынуть из колоды красную карту

В-событие вынуть туза

(рисуются 2 раза 2 кружка, первый раз события несовпад и кружки не пересек, второй раз вынут красный туз-кружки пересек)

С=А+В

Теорема 1.Сложение вероятностей 2х несовместных событий

Вероятность суммы двух несовм событий А и В равна сумме вероятностей этих событий.

Р(А+В)=Р(А)+Р(В)

Если число несовм событий не 2, а более,то данная теорема справедлива,т.е.:

РS(сверху n,снизу i=1)А i =S(сверху n,снизу i=1) Р(А i)

Пример:

1) Произв выстрел по мешени сост из 3х зон

Вероятность попадания в первую зону-0,1

Во вторую-0,3

В третью – 0,4

Определ вероятность попадания в мешень.

1. Обозначение событий и их вероятностей.

А 1 -событие попадания в первую зону

А 2 -во вторую

А 3 -в третью

А-событие попадания в мешень

2. Составим расчетную формулу:

А=А 1 +А 2 +А 3

А 1, А 2, А 3 -несовместные события

Р(А)= Р(А 1)+Р(А 2)+Р(А 3)

3. Расчет:

Р(А)=0,1+0,3+0,4=0,8(80%)

Противоположные события -если они несовместные и образуют полную группу.

А(с – сверху)- противоположное событие

Следствие 1 из теоремы 1:

Сумма вероятностей противоположных событий равна еденице: А(с – сверху)=1

Док-во:

Р(А+А с черточкой)=Р(U)=1 (как вероятность достоверного события)

* Событие назыв достоверным ,если в результате опыта оно обязат произойдет (№:при бросании 2 кубиков выпадет сумма >=2)

События А и А с черточкой – несовместны, тогда по теореме 1:

Р(А+А с черточкой)=Р(А)+Р(А с черточкой)=1

Запись формулы Р(А)+Р(А с черточкой)=1 Р(А)+Р(А с черточкой)=1 в других обозначениях:

где р А произошло; q - вероятность того, что событие А не произошло.

Следствие 2 из теоремы 1:

Если событие А 1 ,А 2 , … А n образуют полную несовм группу событий, то сумма их вероятностей:

Р(А 1)+Р(А 2)+…+Р(А n)=1

S(сверху n,снизу- i=1) Р(А i)=1

* сумма вероятностей несовместных событий, образующих полную группу, равна единице

Пример:

1) Определить вероятность промаха в условия предудущ задачи:

Р(А с -)=1-Р(А)=1-0,8=0,2(20%)

Теорема 2. Сложение вероятностей 2 совместных событий.

Вероятность суммы двух совместных событий равна сумме вероятностей этих событий минус вероятность их совместного появления (т.е. вероятность произведения)

Р(А+В)=Р(А)+Р(В)-Р(АВ)

Произведением (∩) 2х событий А и В называется событие С,состоящее в проявлении А И В одновременно.

Произведение событий. Теорема умножения вероятностей для независисмых событий и следствия из нее.

*Событие – результат (исход) испытания.

*Вероятность события -число характеризующее степень объективной возможности появл-я событий в опыте.

Теорема умножения вероятностей.

О. событие А независимое от В , если вероятность события А не зависит от того,появ ли событие В или нет. В противном случае событие А зависимо от В .

Условная вероятность- Р(А/В)- вероятность события А выше при условии что событие В произошло.

Условная независимость событий.

Если выпад соотношение что:

Р(А/В)=Р(А/В с черточкой)=Р(А)

Р(В/А)=Р(В/Ас черточкой)=Р(В) – независимые события.

Пример :

1) В урне 10 шаров. 7-белых. 3-черных.

Наугад берется 1 шар, потом другой. Найти вероятность того,что оба шара белые.

1. Обозн событий:

А-событие что второй шар белый

В-событие что первый шар белый.

2. Расчеты:

Р(А/В)=(7-1):(10-1)=2/3

Р(А/Вс черточкой)=7:(10-1)=7/9

Р(А/В) ≠Р(А/Вс черточкой)→А,В зависимые.

Теорема 3. Умножение вероятностей 2 независимых событий.

Вероятность произведения 2х событий равна произведению вероятности одного из них на условную вероятность другого, вычисляемую при усл что первое событие имело место.

Р(А×В)=Р(А)×Р(В/А)= Р(В)×Р(А/В)

Если А и В независимы,то вероятность 2х событий равна произведению их вероятностей:

Р(А×В)=Р(А)×Р(В)

Если событий больше 2х,то:

Р(∩-сверху n снизу i=1 ×А i)=∩-сверху n снизу i=1Р(А i)

Следствие 1

Если события А 1 ,А 2 , … А n -равновероятны, т.е. вероятность

Р(А 1)=Р(А 2)=…=Р(А n)=Р у, то

Р(∩-сверху n снизу i=1 ×А i)=Р n

Следствие 1 (совместны)

Если события А 1 ,А 2 , … А n -независимы, но м.б. совместны, то вероятность появл хотя бы одного из них определ формулой:

Р >=1 =1-(1-Р(А 1))(1-Р(А 2))…(1-Р(А n))

Р(А 1)=Р(А 2)=…=Р(А n)=Р

Р >=1 =1-(1-Р) n

Пример :

1) Определить вероятность исправной работы цепочки состоящей из 2х элементов.

а) случай параллельного соединения

б) последовательного

если вероятность исправной работы первого 0.5, второго 0,6

1. Обозн событий:

А 1 -событие исправной работы 1ого элемента

А 2 -второго

2. Расчет формулы:

а) А=А 1 +А 2 (или 1 или 2 событие, события совсм могут произойти одноврем) необх применить формулу вероятности суммы 2х совм событий :

Р(А)=Р(А 1)+Р(А 2)-Р(А 1 ×А 2)

Вероятность двух независ событий равна произведению их вероятностей.

б) А=А 1 ×А 2

Р(А)=Р(А 1)×Р(А 2)

3. Расчеты:

а) Р(А)=0,5+0,6-0,5*0,6=0,8(80%)

б) Р(А)=0,5*0,6=30%

Условная вероятность. Условие зависимости событий. Теорема умножения вероятностей.

*Событие – результат (исход) испытания.

*Вероятность события -число характеризующее степень объективной возможности появл-я событий в опыте.

Формула полной вероятности.

*Событие – результат (исход) испытания.

*Вероятность события -число характеризующее степень объективной возможности появл-я событий в опыте.

Пусть треб определ вероятность события А,кот может произойти только вместе с одним из событий:Н 1 ,Н 2 , … H n образующих полную группу несовместных событий

Данные события называются ГИПОТЕЗЫ поэтому формула полн вер им вид:

Р(А)=S(сверху n,снизу i=1) Р(Н i)× Р(А/Н i)

Полн вероятность события А равна сумме произведения вероятностей гипотез на условные вероятности событий.

По данным событиям требования к гипотезам: несовместные,сост полн группу
Пример :

1) Имеется 3 урны. В первой-4 белых,6 черных шаров,во второй-3 и 5,в третьей только белые. К одной из урн подх и выним шар. Какова вероятность вытащить белый?

1. Обозн событий:

А-событие, что вынутый шар белый

Н 1 - гипотеза,шар вынут из 1 урны, Н 2 -из второй, Н 3 -из третьей.

2. Расчет формула:

Р(А)=S(сверху 3,снизу i=1) Р(Н i)× Р(А/Н i) *3-т.к. 3 урны

3. Расчеты:

Р(Н 1 )= Р(Н 2 )= Р(Н 3 )=1/3- вероятность что он подойдет к урне

Р(А/ Н 1 )=4:(4+6)=0,4(40%)

Р(А/ Н 2 )=3/8

Р(А/ Н 3 )=1

Р(А)=1/3*4/10+1/3*3/8+1/3*1=59%

*59% означают,что при проведении достаточно большого кол-ва опятов в одинак условиях в средем в 59 случаях из 100 будет вынут белый шар.

2) Из 2х швейных фабрик поступ на базу внешне одинак изделия. С 1ой фабрики поступ втрое больше изделий,чем со второй. Вероятность брака изд с первой фабрике 0,1, со второй 0,05. Найти вероятность того, что наудачу взятое изделии окаж НЕ браков.

1. А-событие, что изделие вытащ из урны БЕЗ брака

Н 1 -гипотеза,что изд будет с первой фабрики, Н 2 -со второй

2. Расчетная формула: Р(А)= S(сверху 2,снизу i=1) Р(Н i) × Р(А/Н i) *2-т.к. 2 фабрики

3. Р(Н 1 )* Р(Н 2 )=3/4*1/4

Р(А/ Н 1 )=1-0,1=0,9 – вероятность без брака, а нам дан брак, значит 1-…

Р(А/ Н 2 )=1-0,05=0,95

Р(А)=9/10*3/4+1/4*95/100=91%

3) Предприятие выпуск за смену изделие 3х видов в кол-ве 160,430,360 шт. каждого вида. ОТК ставит штамп «Брак» или «Экспорт». Найти вероятность того,что наудачу взятое изделие пойдет на экспорт,если вероятность этого для каждого изделия вида 1,2,3=0.9, 0,8 и 0,6 соотв-но.

1. А-событие, что изделие пойдет на экспорт

Н 1 -гипотеза,изделие 1ого вида Н 2 -2ого вида Н 3 -3его вида

2. Р(А)=S(сверху 3,снизу i=1) Р(Н i)× Р(А/Н i) *3-т.к. 3 вида изделий

3. Р(Н 1 )=160/950

Р(Н 2 )= 430/950

Р(Н 3 )=360/950

Р(А)= 160/950*0,9+430/950*0,8+360/950*0,6=74%

Теорема гипотез (формула Байеса)

*Событие – результат (исход) испытания.

*Вероятность события -число характеризующее степень объективной возможности появл-я событий в опыте.

Формула Байеса исп д/определ вероятности гипотезы после испытания,когда событие А УЖЕ имело место.

Если событие А уже произошло,какие-то гипотезы отпадут,значит уменьшится их кол-во. А след-но каким-то образом изменятся их вероятности.

Теорема. Вероятность гипотезы после испытания собятия А,кот уже произошло опред по формуле:

Р(Н i /А)= (Р(Н i)× Р(А/Н i)):(S(сверху n,снизу i=1) Р(Н i)× Р(А/Н i))

Вероятность равна произведению вероятности до испытания на условную вероятность события делить на полную вероятность события.

Пример :

1) В пирамиде 5 винтовок.3-с оптикой,2-без.Вероятность попад из оптич винт-0,95,без-0,7. После выстрела из наугад взятой винтовки мишень оказалась поражена. Что вероятнее: стреляли из винт с оптикой или без?

1. Обозн событий и их вероятностей:

А-событие попадания в цель

Н 1 -гипотеза,из опт винтовки

Н 2 -без оптики

2. Расчетн формулы:

Вероятность гипотезы Н i до испытания на условную вероятность события,делить на полн вероятность события:

Р(Н 1 /А)= (Р(Н 1)× Р(А/Н 1)):(S(сверху 2,снизу i=1) Р(Н i)× Р(А/Н i))

Р(Н 2 /А)= (Р(Н 2)× Р(А/Н 2)):(S(сверху 2,снизу i=1) Р(Н i)× Р(А/Н i))

3. Расчеты:

Р(Н 1)=3/5 *3-винт с оптикой,5-всего винтовок

Р(Н 2)=2/5

Р(А/Н 1)=95/100

Р(А/Н 2)=70/100

Р(Н 1 /А)=(3/5*95/100):(3/5*95/100+2/5*70/100)=57/85

Р(Н 2 /А)=(2/5*70/100):(3/5*95/100+2/5*70/100)=28/85

Ответ:Вероятнее что стреляли из оптич винтовки.

2) С 3х конвееров поступ на склад детали в кол-ве 150,300,350 шт. вероятность брака 0,3 0,2 0,2. Наудачу взятая дет НЕбрак. Найти вероятность того,что деталь с третьего конвеера.

1. А-событие что деталь небрак

Н 1 -гипотеза,что с первого конвеера

Н 2 -со второго

Н 3 -с третьего.

2. Р(Н 3 /А)= (Р(Н 3)× Р(А/Н 3)):(S(сверху 2,снизу i=1) Р(Н i)× Р(А/Н i))

3. Р(Н 1 )=m/n=150/(150+300+350)=150/800

Р(Н 2 )= 300/800

Р(Н 3 )=350/800

Р(Н 1 )+Р(Н 2 )+Р(Н 3 )=1

Р(А/Н 1)=1-0,3=0,7

Р(А/Н 2)=1-0,2=0,8

Р(А/Н 3)=1-0,2=0,8 *0,7 0,8 0,8-имела место та или иная гипотеза.

Р(Н 3 /А)=(7/16*8/10):(3/16*7/10+3/8*8/10+7/16*8/10)=44,8%

Что такое вероятность?

Столкнувшись с этим термином первый раз, я бы не понял, что это такое. Поэтому попытаюсь объяснить доступно.

Вероятность - это шанс того, что произойдет нужное нам событие.

Например, ты решил зайти к знакомому, помнишь подъезд и даже этаж на котором он живет. А вот номер и расположение квартиры забыл. И вот стоишь ты на лестничной клетке, а перед тобой двери на выбор.

Каков шанс (вероятность) того, что если ты позвонишь в первую дверь, тебе откроет твой друг? Всего квартиры, а друг живет только за одной из них. С равным шансом мы можем выбрать любую дверь.

Но каков этот шанс?

Дверей, нужная дверь. Вероятность угадать, позвонив в первую дверь: . То есть один раз из трех ты точно угадаешь.

Мы хотим узнать, позвонив раз, как часто мы будем угадывать дверь? Давай рассмотри все варианты:

  1. Ты позвонил в дверь
  2. Ты позвонил в дверь
  3. Ты позвонил в дверь

А теперь рассмотрим все варианты, где может находиться друг:

а. За 1ой дверью
б. За 2ой дверью
в. За 3ей дверью

Сопоставим все варианты в виде таблицы. Галочкой обозначены варианты, когда твой выбор совпадает с местоположением друга, крестиком - когда не совпадает.

Как видишь всего возможно вариантов местоположения друга и твоего выбора, в какую дверь звонить.

А благоприятных исходов всего . То есть раза из ты угадаешь, позвонив в дверь раз, т.е. .

Это и есть вероятность - отношение благоприятного исхода (когда твой выбор совпал с местоположение друга) к количеству возможных событий.

Определение - это и есть формула. Вероятность принято обозначать p, поэтому:

Такую формулу писать не очень удобно, поэтому примем за - количество благоприятных исходов, а за - общее количество исходов.

Вероятность можно записывать в процентах, для этого нужно умножить получившийся результат на:

Наверное, тебе бросилось в глаза слово «исходы». Поскольку математики называют различные действия (у нас такое действие - это звонок в дверь) экспериментами, то результатом таких экспериментов принято называть исход.

Ну а исходы бывают благоприятные и неблагоприятные.

Давай вернемся к нашему примеру. Допустим, мы позвонили в одну из дверей, но нам открыл незнакомый человек. Мы не угадали. Какова вероятность, что если позвоним в одну из оставшихся дверей, нам откроет наш друг?

Если ты подумал, что, то это ошибка. Давай разбираться.

У нас осталось две двери. Таким образом, у нас есть возможные шаги:

1) Позвонить в 1-ую дверь
2) Позвонить во 2-ую дверь

Друг, при всем этом, точно находится за одной из них (ведь за той, в которую мы звонили, его не оказалось):

а) Друг за 1-ой дверью
б) Друг за 2-ой дверью

Давай снова нарисуем таблицу:

Как видишь, всего есть варианта, из которых - благоприятны. То есть вероятность равна.

А почему не?

Рассмотренная нами ситуация - пример зависимых событий. Первое событие - это первый звонок в дверь, второе событие - это второй звонок в дверь.

А зависимыми они называются потому что влияют на следующие действия. Ведь если бы после первого звонка в дверь нам открыл друг, то какова была бы вероятность того, что он находится за одной из двух других? Правильно, .

Но если есть зависимые события, то должны быть и независимые ? Верно, бывают.

Хрестоматийный пример - бросание монетки.

  1. Бросаем монетку раз. Какова вероятность того, что выпадет, например, орел? Правильно - , ведь вариантов всего (либо орел, либо решка, пренебрежем вероятностью монетки встать на ребро), а устраивает нас только.
  2. Но выпала решка. Ладно, бросаем еще раз. Какова сейчас вероятность выпадения орла? Ничего не изменилось, все так же. Сколько вариантов? Два. А сколько нас устраивает? Один.

И пусть хоть тысячу раз подряд будет выпадать решка. Вероятность выпадения орла на раз будет все также. Вариантов всегда, а благоприятных - .

Отличить зависимые события от независимых легко:

  1. Если эксперимент проводится раз (раз бросают монетку, 1 раз звонят в дверь и т.д.), то события всегда независимые.
  2. Если эксперимент проводится несколько раз (монетку бросают раз, в дверь звонят несколько раз), то первое событие всегда независимое. А дальше, если количество благоприятных или количество всех исходов меняется, то события зависимые, а если нет - независимые.

Давай немного потренируемся определять вероятность.

Пример 1.

Монетку бросают два раза. Какова вероятность того, что два раза подряд выпадет орел?

Решение:

Рассмотрим все возможные варианты:

  1. Орел-орел
  2. Орел-решка
  3. Решка-орел
  4. Решка-решка

Как видишь, всего варианта. Из них нас устраивает только. То есть вероятность:

Если в условии просят просто найти вероятность, то ответ нужно давать в виде десятичной дроби. Если было бы указано, что ответ нужно дать в процентах, тогда мы умножили бы на.

Ответ:

Пример 2.

В коробке конфет все конфеты упакованы в одинаковую обертку. Однако из конфет - с орехами, с коньяком, с вишней, с карамелью и с нугой.

Какова вероятность, взяв одну конфету, достать конфету с орехами. Ответ дайте в процентах.

Решение:

Сколько всего возможных исходов? .

То есть, взяв одну конфету, она будет одной из, имеющихся в коробке.

А сколько благоприятных исходов?

Потому что в коробке только конфет с орехами.

Ответ:

Пример 3.

В коробке шаров. из них белые, - черные.

  1. Какова вероятность вытащить белый шар?
  2. Мы добавили в коробку еще черных шаров. Какова теперь вероятность вытащить белый шар?

Решение:

а) В коробке всего шаров. Из них белых.

Вероятность равна:

б) Теперь шаров в коробке стало. А белых осталось столько же - .

Ответ:

Полная вероятность

Вероятность всех возможных событий равна ().

Допустим, в ящике красных и зеленых шаров. Какова вероятность вытащить красный шар? Зеленый шар? Красный или зеленый шар?

Вероятность вытащить красный шар

Зеленый шар:

Красный или зеленый шар:

Как видишь, сумма всех возможных событий равна (). Понимание этого момента поможет тебе решить многие задачи.

Пример 4.

В ящике лежит фломастеров: зеленых, красных, синих, желтых, черный.

Какова вероятность вытащить НЕ красный фломастер?

Решение:

Давай посчитаем количество благоприятных исходов.

НЕ красный фломастер, это значит зеленый, синий, желтый или черный.

Вероятность всех событий. А вероятность событий, которые мы считаем неблагоприятными (когда вытащим красный фломастер) - .

Таким образом, вероятность вытащить НЕ красный фломастер - .

Ответ:

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Что такое независимые события ты уже знаешь.

А если нужно найти вероятность того, что два (или больше) независимых события произойдут подряд?

Допустим мы хотим знать, какова вероятность того, что бросая монетку раза, мы два раза увидим орла?

Мы уже считали - .

А если бросаем монетку раза? Какова вероятность увидеть орла раза подряд?

Всего возможных вариантов:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Не знаю как ты, но я раза ошибся, составляя этот список. Ух! А подходит нам только вариант (первый).

Для 5 бросков можешь составить список возможных исходов сам. Но математики не столь трудолюбивы, как ты.

Поэтому они сначала заметили, а потом доказали, что вероятность определенной последовательности независимых событий каждый раз уменьшается на вероятность одного события.

Другими словами,

Рассмотрим на примере все той же, злосчастной, монетки.

Вероятность выпадения орла в испытании? . Теперь мы бросаем монетку раз.

Какова вероятность выпадения раз подряд орла?

Это правило работает не только, если нас просят найти вероятность того, что произойдет одно и то же событие несколько раз подряд.

Если бы мы хотели найти последовательность РЕШКА-ОРЕЛ-РЕШКА, при бросках подряд, мы поступили бы также.

Вероятность выпадения решка - , орла - .

Вероятность выпадения последовательности РЕШКА-ОРЕЛ-РЕШКА-РЕШКА:

Можешь проверить сам, составив таблицу.

Правило сложения вероятностей несовместных событий.

Так стоп! Новое определение.

Давай разбираться. Возьмем нашу изношенную монетку и бросим её раза.
Возможные варианты:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Так вот несовместные события, это определенная, заданная последовательность событий. - это несовместные события.

Если мы хотим определить, какова вероятность двух (или больше) несовместных событий то мы складываем вероятности этих событий.

Нужно понять, что выпадение орла или решки - это два независимых события.

Если мы хотим определить, какова вероятность выпадения последовательности) (или любой другой), то мы пользуемся правилом умножения вероятностей.
Какова вероятность выпадения при первом броске орла, а при втором и третьем решки?

Но если мы хотим узнать, какова вероятность выпадения одной из нескольких последовательностей, например, когда орел выпадет ровно раз, т.е. варианты и, то мы должны сложить вероятности этих последовательностей.

Всего вариантов, нам подходит.

То же самое мы можем получить, сложив вероятности появления каждой последовательности:

Таким образом, мы складываем вероятности, когда хотим определить вероятность некоторых, несовместных, последовательностей событий.

Есть отличное правило, помогающее не запутаться, когда умножать, а когда складывать:

Возвратимся к примеру, когда мы подбросили монетку раза, и хотим узнать вероятность увидеть орла раз.
Что должно произойти?

Должны выпасть:
(орел И решка И решка) ИЛИ (решка И орел И решка) ИЛИ (решка И решка И орел).
Вот и получается:

Давай рассмотрим несколько примеров.

Пример 5.

В коробке лежит карандашей. красных, зеленых, оранжевых и желтых и черных. Какова вероятность вытащить красный или зеленый карандаши?

Решение:

Что должно произойти? Мы должны вытащить (красный ИЛИ зеленый).

Теперь понятно, складываем вероятности этих событий:

Ответ:

Пример 6.

Игральную кость бросают дважды, какова вероятность того, что в сумме выпадет 8 очков?

Решение.

Как мы можем получить очков?

(и) или (и) или (и) или (и) или (и).

Вероятность выпадения одной (любой) грани - .

Считаем вероятность:

Ответ:

Тренировка.

Думаю, теперь тебе стало понятно, когда нужно как считать вероятности, когда их складывать, а когда умножать. Не так ли? Давай немного потренируемся.

Задачи:

Возьмем карточную колоду, в которой карты, из них пик, червей, 13 треф и 13 бубен. От до туза каждой масти.

  1. Какова вероятность вытащить трефы подряд (первую вытащенную карту мы кладем обратно в колоду и перемешиваем)?
  2. Какова вероятность вытащить черную карту (пики или трефы)?
  3. Какова вероятность вытащить картинку (вальта, даму, короля или туза)?
  4. Какова вероятность вытащить две картинки подряд (первую вытащенную карту мы убираем из колоды)?
  5. Какова вероятность, взяв две карты, собрать комбинацию - (валет, дама или король) и туз Последовательность, в которой будут вытащены карты, не имеет значения.

Ответы:

  1. В колоде карты каждого достоинства, значит:
  2. События зависимы, так как после первой вытащенной карты количество карт в колоде уменьшилось (как и количество «картинок»). Всего вальтов, дам, королей и тузов в колоде изначально, а значит вероятность первой картой вытащить «картинку»:

    Поскольку мы убираем из колоды первую карту, то значит в колоде осталось уже карта, из них картинок. Вероятность второй картой вытащить картинку:

    Поскольку нас интересует ситуация, когда мы достаем из колоды: «картинку» И «картинку», то нужно перемножать вероятности:

    Ответ:

  3. После первой вытащенной карты, количество карт в колоде уменьшится.Таким образом, нам подходит два варианта:
    1) Первой картой вытаскиваем Туза, второй - валета, даму или короля
    2) Первой картой вытаскиваем валета, даму или короля, второй - туза.Т.е. (туз и (валет или дама или король)) или ((валет или дама или король) и туз). Не забываем про уменьшение количества карт в колоде!

Если ты смог сам решить все задачи, то ты большой молодец! Теперь задачи на теорию вероятностей в ЕГЭ ты будешь щелкать как орешки!

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. СРЕДНИЙ УРОВЕНЬ

Рассмотрим пример. Допустим, мы бросаем игральную кость. Что это за кость такая, знаешь? Так называют кубик с цифрами на гранях. Сколько граней, столько и цифр: от до скольки? До.

Итак, мы бросаем кость и хотим, чтобы выпало или. И нам выпадает.

В теории вероятностей говорят, что произошло благоприятное событие (не путай с благополучным).

Если бы выпало, событие тоже было бы благоприятным. Итого может произойти всего два благоприятных события.

А сколько неблагоприятных? Раз всего возможных событий, значит, неблагоприятных из них события (это если выпадет или).

Определение:

Вероятностью называется отношение количества благоприятных событий к количеству всех возможных событий . То есть вероятность показывает, какая доля из всех возможных событий приходится на благоприятные.

Обозначают вероятность латинской буквой (видимо, от английского слова probability - вероятность).

Принято измерять вероятность в процентах (см. темы и ) . Для этого значение вероятности нужно умножать на. В примере с игральной костью вероятность.

А в процентах: .

Примеры (реши сам):

  1. С какой вероятностью при бросании монетки выпадет орел? А с какой вероятностью выпадет решка?
  2. С какой вероятностью при бросании игральной кости выпадет четное число? А с какой - нечетное?
  3. В ящике простых, синих и красных карандашей. Наугад тянем один карандаш. Какова вероятность вытащить простой?

Решения:

  1. Сколько всего вариантов? Орел и решка - всего два. А сколько из них благоприятных? Только один - орел. Значит, вероятность

    С решкой то же самое: .

  2. Всего вариантов: (сколько сторон у кубика, столько и различных вариантов). Благоприятных из них: (это все четные числа:).
    Вероятность. С нечетными, естественно, то же самое.
  3. Всего: . Благоприятных: . Вероятность: .

Полная вероятность

Все карандаши в ящике зеленые. Какова вероятность вытащить красный карандаш? Шансов нет: вероятность (ведь благоприятных событий -).

Такое событие называется невозможным .

А какова вероятность вытащить зеленый карандаш? Благоприятных событий ровно столько же, сколько событий всего (все события - благоприятные). Значит, вероятность равна или.

Такое событие называется достоверным .

Если в ящике зеленых и красных карандашей, какова вероятность вытащить зеленый или красный? Опять же. Заметим такую вещь: вероятность вытащить зеленый равна, а красный - .

В сумме эти вероятности равны ровно. То есть, сумма вероятностей всех возможных событий равна или.

Пример:

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность не вытащить зеленый?

Решение:

Помним, что все вероятности в сумме дают. А вероятность вытащить зеленый равна. Значит, вероятность не вытащить зеленый равна.

Запомни этот прием: вероятность того, что событие не произойдет равна минус вероятность того, что событие произойдет.

Независимые события и правило умножения

Ты кидаешь монетку раза, и хочешь, чтобы оба раза выпал орел. Какова вероятность этого?

Давай переберем все возможные варианты и определим, сколько их:

Орел-Орел, Решка-Орел, Орел-Решка, Решка-Решка. Какие еще?

Всего варианта. Из них нам подходит только один: Орел-Орел. Итого, вероятность равна.

Хорошо. А теперь кидаем монетку раза. Посчитай сам. Получилось? (ответ).

Ты мог заметить, что с добавлением каждого следующего броска вероятность уменьшается в раза. Общее правило называется правилом умножения :

Вероятности независимых событий переменожаются.

Что такое независимые события? Все логично: это те, которые не зависят друг от друга. Например, когда мы бросаем монетку несколько раз, каждый раз производится новый бросок, результат которого не зависит от всех предыдущих бросков. С таким же успехом мы можем бросать одновременно две разные монетки.

Еще примеры:

  1. Игральную кость бросают дважды. Какова вероятность, что оба раза выпадет?
  2. Монетку бросают раза. Какова вероятность, что в первый раз выпадет орел, а потом два раза решка?
  3. Игрок бросает две кости. Какова вероятность, что сумма чисел на них будет равна?

Ответы:

  1. События независимы, значит, работает правило умножения: .
  2. Вероятность орла равна. Вероятность решки - тоже. Перемножаем:
  3. 12 может получиться только, если выпадут две -ки: .

Несовместные события и правило сложения

Несовместными называются события, которые дополняют друг друга до полной вероятности. Из названия видно, что они не могут произойти одновременно. Например, если бросаем монетку, может выпасть либо орел, либо решка.

Пример.

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность вытащить зеленый или красный?

Решение .

Вероятность вытащить зеленый карандаш равна. Красный - .

Благоприятных событий всего: зеленых + красных. Значит, вероятность вытащить зеленый или красный равна.

Эту же вероятность можно представить в таком виде: .

Это и есть правило сложения: вероятности несовместных событий складываются.

Задачи смешанного типа

Пример.

Монетку бросают два раза. Какова вероятность того, что результат бросков будет разный?

Решение .

Имеется в виду, что если первым выпал орел, второй должна быть решка, и наоборот. Получается, что здесь две пары независимых событий, и эти пары друг с другом несовместны. Как бы не запутаться, где умножать, а где складывать.

Есть простое правило для таких ситуаций. Попробуй описать, что должно произойти, соединяя события союзами «И» или «ИЛИ». Например, в данном случае:

Должны выпасть (орел и решка) или (решка и орел).

Там где стоит союз «и», будет умножение, а там где «или» - сложение:

Попробуй сам:

  1. С какой вероятностью при двух бросаниях монетки оба раза выпадет одно и та же сторона?
  2. Игральную кость бросают дважды. Какова вероятность, что в сумме выпадет очков?

Решения:

  1. (Выпал орел и выпал орел) или (выпала решка и выпала решка): .
  2. Какие есть варианты? и. Тогда:
    Выпало (и) или (и) или (и): .

Еще пример:

Бросаем монетку раза. Какова вероятность, что хотя-бы один раз выпадет орел?

Решение:

Ой, как же не хочется перебирать варианты… Орел-решка-решка, Орел-орел-решка, … А и не надо! Вспоминаем про полную вероятность. Вспомнил? Какова вероятность, что орел не выпадет ни разу ? Это же просто: все время летят решки, значит.

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. КОРОТКО О ГЛАВНОМ

Вероятность - это отношение количества благоприятных событий к количеству всех возможных событий.

Независимые события

Два события независимы если при наступлении одного вероятность наступления другого не изменяется.

Полная вероятность

Вероятность всех возможных событий равна ().

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Вероятность определенной последовательности независимых событий, равна произведению вероятностей каждого из событий

Несовместные события

Несовместными называются события, которые никак не могут произойти одновременно в результате эксперимента. Ряд несовместных событий образуют полную группу событий.

Вероятности несовместных событий складываются.

Описав что должно произойти, используя союзы «И» или «ИЛИ», вместо «И» ставим знак умножения, а вместо «ИЛИ» — сложения.

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике,

А также получить доступ к учебнику YouClever без ограничений...

Изначально, будучи всего лишь собранием сведений и эмпирических наблюдений за игрой в кости, теория вероятности стала основательной наукой. Первыми, кто придал ей математический каркас, были Ферма и Паскаль.

От размышлений о вечном до теории вероятностей

Две личности, которым теория вероятностей обязана многими фундаментальными формулами, Блез Паскаль и Томас Байес, известны как глубоко верующие люди, последний был пресвитерианским священником. Видимо, стремление этих двух ученых доказать ошибочность мнения о некой Фортуне, дарующей удачу своим любимчикам, дало толчок к исследованиям в этой области. Ведь на самом деле любая азартная игра с ее выигрышами и проигрышами — это всего лишь симфония математических принципов.

Благодаря азарту кавалера де Мере, который в равной степени был игроком и человеком небезразличным к науке, Паскаль вынужден был найти способ расчета вероятности. Де Мере интересовал такой вопрос: "Сколько раз нужно выбрасывать попарно две кости, чтобы вероятность получить 12 очков превышала 50%?". Второй вопрос, крайне интересовавший кавалера: "Как разделить ставку между участниками незаконченной игры?" Разумеется, Паскаль успешно ответил на оба вопроса де Мере, который стал невольным зачинателем развития теории вероятностей. Интересно, что персона де Мере так и осталась известна в данной области, а не в литературе.

Ранее ни один математик еще не делал попыток вычислять вероятности событий, поскольку считалось, что это лишь гадательное решение. Блез Паскаль дал первое определение вероятности события и показал, что это конкретная цифра, которую можно обосновать математическим путем. Теория вероятностей стала основой для статистики и широко применяется в современной науке.

Что такое случайность

Если рассматривать испытание, которое можно повторить бесконечное число раз, тогда можно дать определение случайному событию. Это один из вероятных исходов опыта.

Опытом является осуществление конкретных действий в неизменных условиях.

Чтобы можно было работать с результатами опыта, события обычно обозначают буквами А, B, C, D, Е…

Вероятность случайного события

Чтобы можно было приступить к математической части вероятности, нужно дать определения всем ее составляющим.

Вероятность события - это выраженная в числовой форме мера возможности появления некоторого события (А или B) в результате опыта. Обозначается вероятность как P(A) или P(B).

В теории вероятностей отличают:

  • достоверное событие гарантированно происходит в результате опыта Р(Ω) = 1;
  • невозможное событие никогда не может произойти Р(Ø) = 0;
  • случайное событие лежит между достоверным и невозможным, то есть вероятность его появления возможна, но не гарантирована (вероятность случайного события всегда в пределах 0≤Р(А)≤ 1).

Отношения между событиями

Рассматривают как одно, так и сумму событий А+В, когда событие засчитывается при осуществлении хотя бы одного из составляющих, А или В, или обоих - А и В.

По отношению друг к другу события могут быть:

  • Равновозможными.
  • Совместимыми.
  • Несовместимыми.
  • Противоположными (взаимоисключающими).
  • Зависимыми.

Если два события могут произойти с равной вероятностью, то они равновозможные .

Если появление события А не сводит к нулю вероятность появление события B, то они совместимые.

Если события А и В никогда не происходят одновременно в одном и том же опыте, то их называют несовместимыми . Бросание монеты - хороший пример: появление решки - это автоматически непоявление орла.

Вероятность для суммы таких несовместимых событий состоит из суммы вероятностей каждого из событий:

Р(А+В)=Р(А)+Р(В)

Если наступление одного события делает невозможным наступление другого, то их называют противоположными. Тогда одно из них обозначают как А, а другое - Ā (читается как «не А»). Появление события А означает, что Ā не произошло. Эти два события формируют полную группу с суммой вероятностей, равной 1.

Зависящие события имеют взаимное влияние, уменьшая или увеличивая вероятность друг друга.

Отношения между событиями. Примеры

На примерах гораздо проще понять принципы теории вероятностей и комбинации событий.

Опыт, который будет проводиться, заключается в вытаскивании шариков из ящика, а результата каждого опыта - элементарный исход.

Событие - это один из возможных исходов опыта - красный шар, синий шар, шар с номером шесть и т. д.

Испытание №1. Участвуют 6 шаров, три из которых окрашены в синий цвет, на них нанесены нечетные цифры, а три других - красные с четными цифрами.

Испытание №2. Участвуют 6 шаров синего цвета с цифрами от одного до шести.

Исходя из этого примера, можно назвать комбинации:

  • Достоверное событие. В исп. №2 событие «достать синий шар» достоверное, поскольку вероятность его появления равна 1, так как все шары синие и промаха быть не может. Тогда как событие «достать шар с цифрой 1» - случайное.
  • Невозможное событие. В исп. №1 с синими и красными шарами событие «достать фиолетовый шар» невозможное, поскольку вероятность его появления равна 0.
  • Равновозможные события. В исп. №1 события «достать шар с цифрой 2» и «достать шар с цифрой 3» равновозможные, а события «достать шар с четным числом» и «достать шар с цифрой 2» имеют разную вероятность.
  • Совместимые события. Два раза подряд получить шестерку в процессе бросания игральной кости - это совместимые события.
  • Несовместимые события. В том же исп. №1 события «достать красный шар» и «достать шар с нечетным числом» не могут быть совмещены в одном и том же опыте.
  • Противоположные события. Наиболее яркий пример этого - подбрасывание монет, когда вытягивание орла равносильно невытягиванию решки, а сумма их вероятностей - это всегда 1 (полная группа).
  • Зависимые события . Так, в исп. №1 можно задаться целью извлечь два раза подряд красный шар. Его извлечение или неизвлечение в первый раз влияет на вероятность извлечения во второй раз.

Видно, что первое событие существенно влияет на вероятность второго (40% и 60%).

Формула вероятности события

Переход от гадательных размышлений к точным данным происходит посредством перевода темы в математическую плоскость. То есть суждения о случайном событии вроде "большая вероятность" или "минимальная вероятность" можно перевести к конкретным числовым данным. Такой материал уже допустимо оценивать, сравнивать и вводить в более сложные расчеты.

С точки зрения расчета, определение вероятности события - это отношение количества элементарных положительных исходов к количеству всех возможных исходов опыта относительно определенного события. Обозначается вероятность через Р(А), где Р означает слово «probabilite», что с французского переводится как «вероятность».

Итак, формула вероятности события:

Где m - количество благоприятных исходов для события А, n - сумма всех исходов, возможных для этого опыта. При этом вероятность события всегда лежит между 0 и 1:

0 ≤ Р(А)≤ 1.

Расчет вероятности события. Пример

Возьмем исп. №1 с шарами, которое описано ранее: 3 синих шара с цифрами 1/3/5 и 3 красных с цифрами 2/4/6.

На основании этого испытания можно рассматривать несколько разных задач:

  • A - выпадение красного шара. Красных шаров 3, а всего вариантов 6. Это простейший пример, в котором вероятность события равна Р(А)=3/6=0,5.
  • B - выпадение четного числа. Всего четных чисел 3 (2,4,6), а общее количество возможных числовых вариантов - 6. Вероятность этого события равна Р(B)=3/6=0,5.
  • C - выпадение числа, большего, чем 2. Всего таких вариантов 4 (3,4,5,6) из общего количества возможных исходов 6. Вероятность события С равна Р(С)=4/6=0,67.

Как видно из расчетов, событие С имеет большую вероятность, поскольку количество вероятных положительных исходов выше, чем в А и В.

Несовместные события

Такие события не могут одновременно появиться в одном и том же опыте. Как в исп. №1 невозможно одновременно достать синий и красный шар. То есть можно достать либо синий, либо красный шар. Точно так же в игральной кости не могут одновременно появиться четное и нечетное число.

Вероятность двух событий рассматривается как вероятность их суммы или произведения. Суммой таких событий А+В считается такое событие, которое состоит в появлении события А или В, а произведение их АВ - в появлении обоих. Например, появление двух шестерок сразу на гранях двух кубиков в одном броске.

Сумма нескольких событий являет собой событие, предполагающее появление, по крайней мере, одного из них. Произведение нескольких событий - это совместное появление их всех.

В теории вероятности, как правило, употребление союза "и" обозначает сумму, союза "или" - умножение. Формулы с примерами помогут понять логику сложения и умножения в теории вероятностей.

Вероятность суммы несовместных событий

Если рассматривается вероятность несовместных событий, то вероятность суммы событий равна сложению их вероятностей:

Р(А+В)=Р(А)+Р(В)

Например: вычислим вероятность того, что в исп. №1 с синими и красными шарами выпадет число между 1 и 4. Рассчитаем не в одно действие, а суммой вероятностей элементарных составляющих. Итак, в таком опыте всего 6 шаров или 6 всех возможных исходов. Цифры, которые удовлетворяют условие, - 2 и 3. Вероятность выпадения цифры 2 составляет 1/6, вероятность цифра 3 также 1/6. Вероятность того, что выпадет цифра между 1 и 4 равна:

Вероятность суммы несовместимых событий полной группы равна 1.

Так, если в опыте с кубиком сложить вероятности выпадения всех цифр, то в результате получим единицу.

Также это справедливо для противоположных событий, например в опыте с монетой, где одна ее сторона - это событие А, а другая - противоположное событие Ā, как известно,

Р(А) + Р(Ā) = 1

Вероятность произведения несовместных событий

Умножение вероятностей применяют, когда рассматривают появление двух и более несовместных событий в одном наблюдении. Вероятность того, что в нем появятся события A и B одновременно, равна произведению их вероятностей, или:

Р(А*В)=Р(А)*Р(В)

Например, вероятность того, что в исп. №1 в результате двух попыток два раза появится синий шар, равна

То есть вероятность наступления события, когда в результате двух попыток с извлечением шаров будет извлечены только синие шары, равна 25%. Очень легко проделать практические эксперименты этой задачи и увидеть, так ли это на самом деле.

Совместные события

События считаются совместными, когда появление одного из них может совпасть с появлением другого. Несмотря на то что они совместные, рассматривается вероятность независимых событий. К примеру, бросание двух игральных костей может дать результат, когда на обеих из них выпадает цифра 6. Хотя события совпали и появились одновременно, они независимы друг от друга - могла выпасть всего одна шестерка, вторая кость на нее влияния не имеет.

Вероятность совместных событий рассматривают как вероятность их суммы.

Вероятность суммы совместных событий. Пример

Вероятность суммы событий А и В, которые по отношению к друг другу совместные, равняется сумме вероятностей события за вычетом вероятности их произведения (то есть их совместного осуществления):

Р совместн. (А+В)=Р(А)+Р(В)- Р(АВ)

Допустим, что вероятность попадания в мишень одним выстрелом равна 0,4. Тогда событие А - попадание в мишень в первой попытке, В - во второй. Эти события совместные, поскольку не исключено, что можно поразить мишень и с первого, и со второго выстрела. Но события не являются зависимыми. Какова вероятность наступления события поражения мишени с двух выстрелов (хотя бы с одного)? Согласно формуле:

0,4+0,4-0,4*0,4=0,64

Ответ на вопрос следующий: "Вероятность попасть в цель с двух выстрелов равна 64%".

Эта формула вероятности события может быть применима и к несовместным событиям, где вероятность совместно появления события Р(АВ) = 0. Это значит, что вероятность суммы несовместных событий можно считать частным случаем предложенной формулы.

Геометрия вероятности для наглядности

Интересно, что вероятность суммы совместных событий может быть представлена в виде двух областей А и В, которые пересекаются между собой. Как видно из картинки, площадь их объединения равна общей площади за минусом области их пересечения. Это геометрическое пояснения делают более понятной нелогичную на первый взгляд формулу. Отметим, что геометрические решения - не редкость в теории вероятностей.

Определение вероятности суммы множества (больше двух) совместных событий довольно громоздкое. Чтобы вычислить ее, нужно воспользоваться формулами, которые предусмотрены для этих случаев.

Зависимые события

Зависимыми события называются в случае, если наступление одного (А) из них влияет на вероятность наступления другого (В). Причем учитывается влияние как появления события А, так и его непоявление. Хотя события и называются зависимыми по определению, но зависимо лишь одно из них (В). Обычная вероятность обозначалась как Р(В) или вероятность независимых событий. В случае с зависимыми вводится новое понятие - условная вероятность Р A (В) , которая является вероятностью зависимого события В при условии произошедшего события А (гипотезы), от которого оно зависит.

Но ведь событие А тоже случайно, поэтому у него также есть вероятность, которую нужно и можно учитывать в осуществляемых расчетах. Далее на примере будет показано, как работать с зависимыми событиями и гипотезой.

Пример расчета вероятности зависимых событий

Хорошим примером для расчета зависимых событий может стать стандартная колода карт.

На примере колоды в 36 карт рассмотрим зависимые события. Нужно определить вероятность того, что вторая карта, извлеченная из колоды, будет бубновой масти, если первая извлеченная:

  1. Бубновая.
  2. Другой масти.

Очевидно, что вероятность второго события В зависит от первого А. Так, если справедлив первый вариант, что в колоде стало на 1 карту (35) и на 1 бубну (8) меньше, вероятность события В:

Р A (В) =8/35=0,23

Если же справедлив второй вариант, то в колоде стало 35 карт, и по-прежнему сохранилось полное число бубен (9), тогда вероятность следующего события В:

Р A (В) =9/35=0,26.

Видно, что если событие А условлено в том, что первая карта - бубна, то вероятность события В уменьшается, и наоборот.

Умножение зависимых событий

Руководствуясь предыдущей главой, мы принимаем первое событие (А) как факт, но если говорить по сути, оно имеет случайный характер. Вероятность этого события, а именно извлечение бубны из колоды карт, равна:

Р(А) = 9/36=1/4

Поскольку теория не существует сама по себе, а призвана служить в практических целях, то справедливо отметить, что чаще всего нужна вероятность произведения зависимых событий.

Согласно теореме о произведении вероятностей зависимых событий, вероятность появления совместно зависимых событий А и В равна вероятности одного события А, умноженная на условную вероятность события В (зависимого от А):

Р(АВ) = Р (А) *Р A (В)

Тогда в примере с колодой вероятность извлечения двух карт с мастью бубны равна:

9/36*8/35=0,0571, или 5,7%

И вероятность извлечения вначале не бубны, а потом бубны, равна:

27/36*9/35=0,19, или 19%

Видно, что вероятность появления события В больше при условии, что первой извлекается карта масти, отличной от бубны. Такой результат вполне логичный и понятный.

Полная вероятность события

Когда задача с условными вероятностями становится многогранной, то обычными методами ее вычислить нельзя. Когда гипотез больше двух, а именно А1,А2,…,А n , ..образует полную группу событий при условии:

  • P(A i)>0, i=1,2,…
  • A i ∩ A j =Ø,i≠j.
  • Σ k A k =Ω.

Итак, формула полной вероятности для события В при полной группе случайных событий А1,А2,…,А n равна:

Взгляд в будущее

Вероятность случайного события крайне необходима во многих сферах науки: эконометрике, статистике, в физике и т. д. Поскольку некоторые процессы невозможно описать детерминировано, так как они сами имеют вероятностный характер, необходимы особые методы работы. Теория вероятности события может быть использована в любой технологичной сфере как способ определить возможность ошибки или неисправности.

Можно сказать, что, узнавая вероятность, мы некоторым образом делаем теоретический шаг в будущее, разглядывая его через призму формул.

Многие, столкнувшись с понятием «теория вероятности», пугаются, думая, что это нечто непосильное, очень сложное. Но все на самом деле не так трагично. Сегодня мы рассмотрим основное понятие теории вероятности, научимся решать задачи на конкретных примерах.

Наука

Что же изучает такой раздел математики, как «теория вероятности»? Она отмечает закономерности и величин. Впервые данным вопросом заинтересовались ученые еще в восемнадцатом веке, когда изучали азартные игры. Основное понятие теории вероятности - событие. Это любой факт, который констатируется опытом или наблюдением. Но что же такое опыт? Еще одно основное понятие теории вероятности. Оно означает, что этот состав обстоятельств создан не случайно, а с определенной целью. Что касается наблюдения, то здесь исследователь сам не участвует в опыте, а просто является свидетелем данных событий, он никак не влияет на происходящее.

События

Мы узнали, что основное понятие теории вероятности - это событие, но не рассмотрели классификацию. Все они делятся на следующие категории:

  • Достоверные.
  • Невозможные.
  • Случайные.

Независимо от того, какие это события, за которыми наблюдают или создают в ходе опыта, все они подвержены данной классификации. Предлагаем с каждым из видов познакомиться отдельно.

Достоверное событие

Это такое обстоятельство, перед которым сделан необходимый комплекс мероприятий. Для того чтобы лучше вникнуть в суть, лучше привести несколько примеров. Этому закону подчинены и физика, и химия, и экономика, и высшая математика. Теория вероятности включает такое важное понятие, как достоверное событие. Приведем примеры:

  • Мы работаем и получаем вознаграждение в виде заработной платы.
  • Сдали хорошо экзамены, прошли конкурс, за это получаем вознаграждение в виде поступления в учебное заведение.
  • Мы вложили деньги в банк, при необходимости получим их назад.

Такие события являются достоверными. Если мы выполнили все необходимые условия, то обязательно получим ожидаемый результат.

Невозможные события

Сейчас мы рассматриваем элементы теории вероятности. Предлагаем перейти к пояснению следующего вида события, а именно - невозможного. Для начала оговорим самое важное правило - вероятность невозможного события равна нулю.

От данной формулировки нельзя отступать при решении задач. Для пояснения приведем примеры таких событий:

  • Вода замерзла при температуре плюс десять (это невозможно).
  • Отсутствие электроэнергии никак не влияет на производство (так же невозможно, как и в предыдущем примере).

Более примеров приводить не стоит, так как описанные выше очень ярко отражают суть данной категории. Невозможное событие никогда не произойдет во время опыта ни при каких обстоятельствах.

Случайные события

Изучая элементы особое внимание стоит уделить именно данному виду события. Именно их и изучает данная наука. В результате опыта может что-то произойти или нет. Кроме этого, испытание может проводиться неограниченное количество раз. Яркими примерами могут служить:

  • Бросок монеты - это опыт, или испытание, выпадение орла - это событие.
  • Вытягивание мячика из мешка вслепую - испытание, попался красный шар - это событие и так далее.

Таких примеров может быть неограниченное количество, но, в общем, суть должна быть понятна. Для обобщения и систематизирования полученных знаний о событиях приведена таблица. Теория вероятности изучает только последний вид из всех представленных.

название

определение

Достоверные

События, происходящие со стопроцентной гарантией при соблюдении некоторых условий.

Поступление в учебное заведение при хорошей сдаче вступительного экзамена.

Невозможные

События, которые никогда не произойдут ни при каких условиях.

Идет снег при температуре воздуха плюс тридцать градусов по Цельсию.

Случайные

Событие, которое может произойти или нет в ходе проведения опыта/испытания.

Попадание или промах при бросании баскетбольного мяча в кольцо.

Законы

Теория вероятности - это наука, изучающая возможность выпадения какого-либо события. Как и другие, она имеет некоторые правила. Существуют следующие законы теории вероятности:

  • Сходимость последовательностей случайных величин.
  • Закон больших чисел.

При расчете возможности сложного можно использовать комплекс простых событий для достижения результата более легким и быстрым путем. Отметим, что законы теории вероятности легко доказываются с помощью некоторых теорем. Предлагаем для начала познакомиться с первым законом.

Сходимость последовательностей случайных величин

Отметим, что видов сходимости несколько:

  • Последовательность случайных величин сходима по вероятности.
  • Почти невозможное.
  • Среднеквадратическая сходимость.
  • Сходимость по распределению.

Так, с лету, очень тяжело вникнуть в суть. Приведем определения, которые помогут разобраться в данной теме. Для начала первый вид. Последовательность называют сходимой по вероятности , если соблюдено следующее условие: n стремится к бесконечности, число, к которому стремится последовательность, больше нуля и приближена к единице.

Переходим к следующему виду, почти наверное . Говорят, что последовательность сходится почти наверное к случайной величине при n, стремящейся к бесконечности, и Р, стремящейся к величине, приближенной к единице.

Следующий тип - это сходимость среднеквадратическая . При использовании СК-сходимости изучение векторных случайных процессов сводится к изучению их координатных случайных процессов.

Остался последний тип, давайте разберем кратко и его, чтобы переходить непосредственно к решению задач. Сходимость по распределению имеет и еще одно название - «слабое», далее поясним, почему. Слабая сходимость — это сходимость функций распределения во всех точках непрерывности предельной функции распределения.

Обязательно выполним обещание: слабая сходимость отличается от всех вышеперечисленных тем, что случайная величина не определена на вероятностном пространстве. Это возможно потому, что условие формируется исключительно с использованием функций распределения.

Закон больших чисел

Отличными помощниками при доказательстве данного закона станут теоремы теории вероятности, такие как:

  • Неравенство Чебышева.
  • Теорема Чебышева.
  • Обобщенная теорема Чебышева.
  • Теорема Маркова.

Если будем рассматривать все эти теоремы, то данный вопрос может затянуться на несколько десятков листов. У нас же основная задача - это применение теории вероятности на практике. Предлагаем вам прямо сейчас этим и заняться. Но перед этим рассмотрим аксиомы теории вероятностей, они будут основными помощниками при решении задач.

Аксиомы

С первой мы уже познакомились, когда говорили о невозможном событии. Давайте вспоминать: вероятность невозможного события равна нулю. Пример мы приводили очень яркий и запоминающийся: выпал снег при температуре воздуха тридцать градусов по Цельсию.

Вторая звучит следующим образом: достоверное событие происходит с вероятностью, равной единице. Теперь покажем, как это записать с помощью математического языка: Р(В)=1.

Третья: Случайное событие может произойти или нет, но возможность всегда варьируется в пределах от нуля до единицы. Чем ближе значение к единице, тем шансов больше; если значение приближается к нулю, вероятность очень мала. Запишем это математическим языком: 0<Р(С)<1.

Рассмотрим последнюю, четвертую аксиому, которая звучит так: вероятность суммы двух событий равняется сумме их вероятностей. Записываем математическим языком: Р(А+В)=Р(А)+Р(В).

Аксиомы теории вероятностей - это простейшие правила, которые не составит труда запомнить. Попробуем решить некоторые задачи, опираясь на уже полученные знания.

Лотерейный билет

Для начала рассмотрим простейший пример - лотерея. Представьте, что вы купили один лотерейный билет на удачу. Какова вероятность, что вы выиграете не менее двадцати рублей? Всего в тираже участвует тысяча билетов, один из которых имеет приз в пятьсот рублей, десять по сто рублей, пятьдесят по двадцать рублей, а сто - по пять. Задачи по теории вероятности основаны на том, чтобы найти возможность удачи. Сейчас вместе разберем решение выше представленного задания.

Если мы буквой А обозначим выигрыш в пятьсот рублей, то вероятность выпадения А будет равняться 0,001. Как мы это получили? Просто необходимо количество "счастливых" билетов разделить на общее их число (в данном случае: 1/1000).

В - это выигрыш в сто рублей, вероятность будет равняться 0,01. Сейчас мы действовали по тому же принципу, что и в прошлом действии (10/1000)

С - выигрыш равен двадцати рублям. Находим вероятность, она равняется 0,05.

Остальные билеты нас не интересуют, так как их призовой фонд меньше заданного в условии. Применим четвертую аксиому: Вероятность выиграть не менее двадцати рублей составляет Р(А)+Р(В)+Р(С). Буквой Р обозначается вероятность происхождения данного события, мы в предыдущих действиях уже их нашли. Осталось только сложить необходимые данные, в ответе мы получаем 0,061. Это число и будет являться ответом на вопрос задания.

Карточная колода

Задачи по теории вероятности бывают и более сложными, для примера возьмем следующее задание. Перед вами колода из тридцати шести карт. Ваша задача - вытянуть две карты подряд, не перемешивая стопку, первая и вторая карты должны быть тузами, масть значения не имеет.

Для начала найдем вероятность того, что первая карта будет тузом, для этого четыре делим на тридцать шесть. Отложили его в сторону. Достаем вторую карту, это будет туз с вероятностью три тридцать пятых. Вероятность второго события зависит от того, какую карту мы вытянули первой, нам интересно, был это туз или нет. Из этого следует, что событие В зависит от события А.

Следующим действием находим вероятность одновременного осуществления, то есть перемножаем А и В. Их произведение находится следующим образом: вероятность одного события умножаем на условную вероятность другого, которую мы вычисляем, предполагая, что первое событие произошло, то есть первой картой мы вытянули туз.

Для того чтобы стало все понятно, дадим обозначение такому элементу, как события. Вычисляется она, предполагая, что событие А произошло. Рассчитывается следующим образом: Р(В/А).

Продолжим решение нашей задачи: Р(А * В)=Р(А) * Р(В/А) или Р(А * В)=Р(В) * Р(А/В). Вероятность равняется (4/36) * ((3/35)/(4/36). Вычисляем, округляя до сотых. Мы имеем: 0,11 * (0,09/0,11)=0,11 * 0,82=0,09. Вероятность того, что мы вытянем два туза подряд, равна девяти сотым. Значение очень мало, из этого следует, что и вероятность происхождения события крайне мала.

Забытый номер

Предлагаем разобрать еще несколько вариантов заданий, которые изучает теория вероятности. Примеры решения некоторых из них вы уже видели в данной статье, попробуем решить следующую задачу: мальчик забыл последнюю цифру номера телефона своего друга, но так как звонок был очень важен, то начал набирать все по очереди. Нам необходимо вычислить вероятность того, что он позвонит не более трех раз. Решение задачи простейшее, если известны правила, законы и аксиомы теории вероятности.

Перед тем как смотреть решение, попробуйте решить самостоятельно. Нам известно, что последняя цифра может быть от нуля до девяти, то есть всего десять значений. Вероятность набрать нужную составляет 1/10.

Далее нам нужно рассматривать варианты происхождения события, предположим, что мальчик угадал и сразу набрал нужную, вероятность такого события равняется 1/10. Второй вариант: первый звонок промах, а второй в цель. Рассчитаем вероятность такого события: 9/10 умножаем на 1/9, в итоге получаем также 1/10. Третий вариант: первый и второй звонок оказались не по адресу, только с третьего мальчик попал туда, куда хотел. Вычисляем вероятность такого события: 9/10 умножаем на 8/9 и на 1/8, получаем в итоге 1/10. Другие варианты по условию задачи нас не интересуют, по этому нам осталось сложить полученные результаты, в итоге мы имеем 3/10. Ответ: вероятность того, что мальчик позвонит не более трех раз, равняется 0,3.

Карточки с числами

Перед вами девять карточек, на каждой из которых написано число от одного до девяти, цифры не повторяются. Их положили в коробку и тщательно перемешали. Вам необходимо рассчитать вероятность того, что

  • выпадет четное число;
  • двухзначное.

Перед тем как переходить к решению, оговорим, что m - это число удачных случаев, а n - это общее количество вариантов. Найдем вероятность того, что число будет четным. Не составит труда посчитать, что четных чисел четыре, это и будет наша m, всего возможно девять вариантов, то есть m=9. Тогда вероятность равняется 0,44 или 4/9.

Рассматриваем второй случай: количество вариантов девять, а удачных исходов быть вообще не может, то есть m равняется нулю. Вероятность того, что вытянутая карточка будет содержать двухзначное число, так же равняется нулю.