Кто придумал знаменитую теорему о квадрате гипотенузы. Различные способы доказательства теоремы пифагора. Музыка и логика

Привиденцев Владислав, Фарафонова Екатерина

Проектная работа учащихся к математической конференции

Скачать:

Предварительный просмотр:

БОУ ТР ОО «Троснянская средняя общеобразовательная школа»

Ученическая математическая конференция, посвященная великому математику Пифагору

(в рамках Недели математики в школе)

История теоремы Пифагора

(проект)

Подготовили

учащиеся 9 б класса

Фарафонова Екатерина и Привиденцев Владислав

Учитель Билык Т.В.

Январь – 2016г.

Цели:

  • 1.Расширить свои знания по истории математики.
  • 2.Познакомиться с биографическими фактами из жизни Пифагора, связанными с теоремой.
  • 3.Изучить историю теоремы Пифагора через мифы, легенды древности.
  • 4.Рассмотреть применение теоремы Пифагора при решении задач из различных разделов геометрии.

План.

1.Введение

2. Из истории теоремы

3. Стихи о Пифагоре

4. Итог

5. Заключение

Введение.

Теорема Пифагора издавна широко применялась в разных областях науки, техники и практической жизни. О ней писали в своих произведениях римский архитектор и инженер Витрувий, греческий писатель-моралист Плутарх, греческий учёный lll в. Диоген Лаэрций, математик V в. Прокл и многие другие. Легенда о том, что в честь своего открытия Пифагор принёс в жертву быка или, как рассказывают другие, сто быков, послужила поводом для юмора в рассказах писателей и в стихах поэтов.

Поэт Генрих Гейне(1797-1856), известный своими антирелигиозными взглядами и язвительными насмешками над суевериями, в одном из своих произведений высмеивает «учение» о переселении душ следующим образом:

«Кто знает! Кто знает! Душа Пифагора поселилась, быть может, бедняку - кандидата, не сумевшего доказать теоремы Пифагора и поэтому провалившегося на экзамене, тогда как в его экзаменаторах обитают души тех самых быков, которых некогда Пифагор принес в жертву бессмертным богам, обрадованный открытием своей теоремы». История Пифагоровой теоремы начинается задолго до Пифагора. На протяжении веков были даны многочисленные разные доказательства теоремы Пифагора.

Из истории теоремы

Исторический обзор начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: "Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4". В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.

  • Кантор (крупнейший немецкий историк математики) считает, что равенство 32 + 42 = 52 было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5. Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 м. и привяжем к ней по цветной полоске на расстоянии 3м. от одного конца и 4 метра от другого. Прямой угол окажется заключенным между сторонами длиной в 3 и 4 метра. Гарпедонаптам можно было бы возразить, что их способ построения становиться излишним, если воспользоваться, например, деревянным угольником, применяемым всеми плотниками. И действительно, известны египетские рисунки, на которых встречается такой инструмент, например рисунки, изображающие столярную мастерскую.
  • Несколько больше известно о теореме Пифагора у вавилонян . В одном тексте, относимом ко времени Хаммураби , т. е. к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника. Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере в некоторых случаях. Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой-на критическом изучении греческих источников, Ван-дер-Варден (голландский математик) сделал следующий вывод: "Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку." Геометрия у индусов , как и у египтян и вавилонян, была тесно связана с культом. Весьма вероятно, что теорема о квадрате гипотенузы была известна в Индии уже около 18 века до н. э.
  • В первом русском переводе евклидовых "Начал", сделанном Ф. И. Петрушевским, теорема Пифагора изложена так: прямоугольных треугольниках квадрат из стороны, противолежащей прямому углу, равен сумме квадратов из сторон, содержащих прямой угол". В настоящее время известно, что эта теорема не была открыта Пифагором. Однако одни полагают, что Пифагор первым дал ее полноценное доказательство, а другие отказывают ему и в этой заслуге. Некоторые приписывают Пифагору доказательство, которое Евклид приводит в первой книге своих "Начал". С другой стороны, Прокл утверждает, что доказательство в "Началах" принадлежит самому Евклиду. Как мы видим, история математики почти не сохранила достоверных данных о жизни Пифагора и его математической деятельности. Зато легенда сообщает, даже ближайшие обстоятельства, сопровождавшие открытие теоремы. Рассказывают, что в честь этого открытия Пифагор принес в жертву 100 быков.
  • Долгое время считали, что до Пифагора эта теорема не была известна и названа ее потому «теоремой Пифагора». Это название сохранилось поныне. Однако в настоящее время установлено, что эта важнейшая теорема встречается в вавилонских текстах, написанных за 1200 лет до Пифагора.
  • О том, что треугольник со сторонами 3, 4 и 5 есть прямоугольник, знали за 2000 лет до н.э. египтяне, которые, вероятно пользовались этим отношением для построения прямых углов при сооружении зданий. В Китае предложение о квадрате гипотенузы было известно, по крайней мере, за 500 лет до Пифагора. Эта теорема была известна и в Древней,Индии; об этом свидетельствуют предложения, содержащиеся в «Сутрах».

Пифагор сделал много важных открытий, но наибольшую славу учёному принесла доказанная им теорема, которая сейчас носит его имя. Действительно, в современных учебниках теорема сформулирована так: "В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов". - Как записать теорему Пифагора для прямоугольного треугольника АВС с катетами а , b и гипотенузой с.

а 2 + b 2 = с 2

Предполагают, что во времена Пифагора теорема звучала по-другому: "Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах". Действительно, с 2 – площадь квадрата, построенного на гипотенузе, а 2 и b 2 – площади квадратов, построенных на катетах.

Вероятно, факт, изложенный в теореме Пифагора, был сначала установлен для равнобедренных прямоугольных треугольников. Квадрат, построенный на гипотенузе, содержит четыре треугольника. А на каждом катете построен квадрат, содержащий два треугольника. Из рисунка 9 видно, что площадь квадрата, построенного на гипотенузе равна сумме площадей квадратов, построенных на катетах.

Стихи о Пифагоре.
Немецкий писатель-романист А. Шамиссо, который в начале Xl X в. Участвовал в кругосветном путешествии на русском корабле «Рюрик», написал следующие стихи:
Пребудет вечной истина, как скоро
Её познает слабый человек!
И ныне теорема Пифагора
Верна, как и его далёкий век.
Обильно было жертвоприношение
Богам от Пифагора. Сто быков
Он отдал на закланье и сожженье
За света луч, пришедший с облаков.
Поэтому всегда с тех самых пор,
Чуть истина рождается на свет,
Быки ревут, её почуя, вслед.
Они не в силах свету помешать,
А могут лишь, закрыв глаза, дрожать
От страха, что вселил в них Пифагор

Подводим итог:
Если дан нам треугольник
И притом с прямым углом,
То квадрат гипотенузы
Мы всегда легко найдём:
Катеты в квадрат возводим,
Сумму степеней находим
И таким простым путём
К результату мы придём.

Приближается зачёт по геометрии, а на зачётах и экзаменах иногда бывают случаи, когда ученики, вытянув билет, помнят формулировку теоремы, но забывают с чего начать доказательство. Чтобы этого не произошло с вами, предлагаю рисунок – опорный сигнал. Думаю, он надолго останется в вашей памяти.

Отрубил Иван-царевич дракону голову, а у него две новые выросли. На математическом языке это означает: провели в Δ АВС высоту CD , и образовалось два новых прямоугольных треугольника ADC и BDC .

Заключение.

После изучения построенного материала можно заключить, что теорема Пифагора - одна из самых главных теорем геометрии потому, что с её помощью можно доказать много других теорем и решить множество задач.

Пифагор и школа Пифагора сыграли большую роль в усовершенствовании методов решения научных проблем: в математику твёрдо вошло положение о необходимости строгих доказательств, что и придало ей значение особой науки.

Убедитесь, что данный вам треугольник является прямоугольным, так как теорема Пифагора применима только к прямоугольным треугольникам. В прямоугольных треугольниках один из трех углов всегда равен 90 градусам.

  • Прямой угол в прямоугольном треугольнике обозначается значком в виде квадрата, а не в виде кривой, которая обозначает непрямые углы.

Обозначьте стороны треугольника. Катеты обозначьте как «а» и «b» (катеты - стороны, пересекающиеся под прямым углом), а гипотенузу - как «с» (гипотенуза - самая большая сторона прямоугольного треугольника, лежащая напротив прямого угла).

  • Определите, какую сторону треугольника требуется найти. Теорема Пифагора позволяет найти любую сторону прямоугольного треугольника (если известны две другие стороны). Определите, какую сторону (a, b, c) необходимо найти.

    • Например, дана гипотенуза, равная 5, и дан катет, равный 3. В этом случае необходимо найти второй катет. Мы вернемся к этому примеру позднее.
    • Если две другие стороны неизвестны, необходимо найти длину одной из неизвестных сторон, чтобы иметь возможность применить теорему Пифагора. Для этого используйте основные тригонометрические функции (если вам дано значение одного из непрямых углов).
  • Подставьте в формулу a 2 + b 2 = c 2 данные вам значения (или найденные вами значения). Помните, что a и b - это катеты, а с - гипотенуза.

    • В нашем примере напишите: 3² + b² = 5² .
  • Возведите в квадрат каждую известную сторону. Или же оставьте степени - вы можете возвести числа в квадрат позже.

    • В нашем примере напишите: 9 + b² = 25.
  • Обособьте неизвестную сторону на одной стороне уравнения. Для этого перенесите известные значения на другую сторону уравнения. Если вы находите гипотенузу, то в теореме Пифагора она уже обособлена на одной стороне уравнения (поэтому делать ничего не нужно).

    • В нашем примере перенесите 9 на правую сторону уравнения, чтобы обособить неизвестное b². Вы получите b² = 16.
  • Извлеките квадратный корень из обеих частей уравнения. На данном этапе на одной стороне уравнения присутствует неизвестное (в квадрате), а на другой стороне - свободный член (число).

    • В нашем примере b² = 16. Извлеките квадратный корень из обеих частей уравнения и получите b = 4. Таким образом, второй катет равен 4 .
  • Используйте теорему Пифагора в повседневной жизни, так как ее можно применять в большом числе практических ситуаций. Для этого научитесь распознавать прямоугольные треугольники в повседневной жизни - в любой ситуации, в которой два предмета (или линии) пересекаются под прямым углом, а третий предмет (или линия) соединяет (по диагонали) верхушки двух первых предметов (или линий), вы можете использовать теорему Пифагора, чтобы найти неизвестную сторону (если две другие стороны известны).

    • Пример: дана лестница, прислоненная к зданию. Нижняя часть лестницы находится в 5 метрах от основания стены. Верхняя часть лестницы находится в 20 метрах от земли (вверх по стене). Какова длина лестницы?
      • «в 5 метрах от основания стены» означает, что а = 5; «находится в 20 метрах от земли» означает, что b = 20 (то есть вам даны два катета прямоугольного треугольника, так как стена здания и поверхность Земли пересекаются под прямым углом). Длина лестницы есть длина гипотенузы, которая неизвестна.
        • a² + b² = c²
        • (5)² + (20)² = c²
        • 25 + 400 = c²
        • 425 = c²
        • с = √425
        • с = 20,6. Таким образом, приблизительная длина лестницы равна 20,6 метров .
  • Пифагор Самосский вошел в историю, как один из самых выдающихся интеллектуалов человечества. В его много необычных вещей, и кажется, что сама судьба уготовала ему особый жизненный путь.

    Пифагор создал собственную религиозно-философскую школу и прославился, как один из самых великих математиков. Его ум и сообразительность на сотни лет опережали время, в котором он жил.

    Пифагор Самосский

    Краткая биография Пифагора

    Конечно, краткая биография Пифагора не даст нам возможности в полной мере раскрыть эту уникальную личность, но все же главные моменты его жизни мы осветим.

    Детство и юность

    Дата рождения Пифагора точно неизвестна. Историки предполагают, что он родился между 586-569 гг. до н.э., на греческом острове Самос (отсюда и его прозвище – «Самосский»). Согласно одной легенде, родителям Пифагора предсказали, что их сын станет великим мудрецом и просветителем.

    Отца Пифагора звали Мнесарх, а мать – Партения. Глава семейства занимался обработкой драгоценных камней, поэтому семья была достаточно обеспеченной.

    Воспитание и образование

    Уже в раннем возрасте Пифагор проявлял интерес к разным наукам и искусству. Его первого учителя звали Гермодамант. Он заложил в будущего ученого основы музыки, живописи и грамматики, а также заставлял его наизусть учить отрывки из «Одиссеи» и «Илиады» Гомера.

    Когда Пифагору исполнилось 18 лет, он решил отправиться в , чтобы получить еще больше знаний и набраться опыта. Это был серьезный шаг в его биографии, но ему не суждено было осуществиться. Пифагор не смог попасть в Египет, потому что он был закрыт для греков.

    Остановившись на острове Лесбос, Пифагор начал изучать физику, медицину, диалектику и другие науки от Ферекида Сиросского. Прожив на острове несколько лет, он захотел посетить Милет, где еще жил известный философ Фалес, образовавший первую в Греции философскую школу.

    Очень скоро, Пифагор становится одним из самых образованных и известных людей своего времени. Однако спустя какое-то время в биографии мудреца происходят резкие перемены, так как началась персидская война.

    Пифагор попадает в вавилонский плен, и долгое время живет в неволе.

    Мистика и возвращение домой

    Из-за того, что в Вавилоне была популярна астрология и мистика, Пифагор пристрастился к изучению различных мистических таинств, обычаев и сверхъестественных явлений. Вся биография Пифагора полна поиска и решений всевозможных , которые так привлекали его внимание.

    Пробыв в плену более 10 лет, он неожиданно получает освобождение лично от персидского царя, который не понаслышке знал о мудрости ученого грека.

    Оказавшись на свободе, Пифагор тут же возвращается к себе на родину, чтобы рассказать о приобретенных знаниях соотечественникам.

    Школа Пифагора

    Благодаря обширным познаниям, постоянному и ораторскому искусству, ему удается быстро получить известность и признание среди жителей Греции.

    На выступлениях Пифагора всегда присутствует множество людей, которые поражаются мудрости философа и видят в нем чуть ли не божество.

    Одним из главных пунктов биографии Пифагора есть тот факт, что он создал школу, основанную на его собственных принципах миропонимания. Она так и называлась: школа пифагорейцев, то есть последователей Пифагора.

    У него была и своя методика обучения. Например, слушателям запрещалось разговаривать во время занятий, и не позволялось задавать какие-либо вопросы.

    Благодаря этому ученики могли воспитывать в себе скромность, кротость и терпение.

    Современному человеку эти вещи могут показаться странными, но не стоит забывать, что во времена Пифагора самого понятия школьного обучения в нашем понимании попросту не существовало.

    Математика

    Помимо медицины, политики и искусства, Пифагор самым серьезным образом занимался математикой. Ему удалось внести весомый вклад в развитие .

    До сих пор в школах всего мира, самой популярной теоремой считается теорема Пифагора: a 2 +b 2 =c 2 . Каждый школьник помнит, что «пифагоровы штаны, во все стороны равны».

    Кроме этого существует «таблица Пифагора», с помощью которой можно было перемножать цифры. По сути, это современная таблица умножения, просто немного в другом виде.

    Нумерология Пифагора

    В биографии Пифагора имеется примечательная вещь: его всю жизнь чрезвычайно сильно интересовали числа. С их помощью он старался познать природу вещей и явлений, жизни и смерти, страданий, счастья и прочих важных вопросов бытия.

    Цифру 9 он связывал с постоянством, 8 – со смертью, а еще уделял огромное внимание квадрату чисел. В этом смысле совершенным числом была 10. Десятку Пифагор называл символом Космоса.

    Пифагорейцы первыми разделили числа на четные и нечетные. У четных чисел, по мнению математика, было женское начало, а у нечетных – мужское.

    В те времена, когда не существовало науки как таковой, люди познавали жизнь и мироустройство, как могли. Пифагор, как великий сын своего времени, старался искать ответы на эти и другие вопросы с помощью цифр и чисел.

    Философское учение

    Учение Пифагора следует разделить на две категории:

    • Научный подход
    • Религиозность и мистика

    К сожалению, далеко не все труды Пифагора удалось сохранить. А все из-за того, что ученый практически не делал никаких записей, передавая знания ученикам в устной форме.

    Кроме того, что Пифагор был ученым и философом, его можно по праву назвать и религиозным новатором. В этом на него немного был похож Лев Толстой ( мы публиковали в отдельной статье).

    Пифагор был вегетарианцем и побуждал к этому своих последователей. Он не разрешал ученикам употреблять пищу животного происхождения, запрещал им пить спиртные напитки, сквернословить и вести себя непристойно.

    Интересен и тот факт, что Пифагор не обучал простых людей, которые стремились получить лишь поверхностные знания. Он принимал в ученики только тех, в ком видел избранных и просвещенных индивидов.

    Личная жизнь

    Изучая биографию Пифагора, может сложиться ошибочное впечатление, что времени на личную жизнь у него не было. Однако это не совсем так.

    Когда Пифагору было около 60 лет, на одном из своих выступлений он повстречал красивую девушку по имени Феана.

    Они поженились, и от этого брака у них родились мальчик и девочка. Так что выдающийся грек был семейным человеком.

    Смерть

    Как это ни удивительно, но ни один из биографов не может однозначно сказать, каким образом умер великий философ и математик. Существует три версии его смерти.

    Согласно первой, Пифагора убил один из учеников, которого он отказался обучать. В порыве гнева, убийца поджег Академию ученого, где тот и погиб.

    Вторая версия рассказывает о том, что во время пожара, приверженцы ученого, желая спасти его от смерти, создали мост из собственных тел.

    Но самой распространенной версией кончины Пифагора считается его гибель во время вооруженного конфликта в городе Метапонт.

    Великий ученый прожил более 80 лет, умерев в 490 г. до н. э. За свою долгую жизнь он успел сделать очень многое, и его вполне справедливо считают одним из самых выдающихся умов в истории.

    Если вам понравилась биография Пифагора – поделитесь ею в социальных сетях. Пусть об этом гении узнают и ваши друзья.

    Если же вам вообще нравятся краткие биографии, и просто – обязательно подписывайтесь на сайт . С нами всегда интересно!

    Потенциал к творчеству обычно приписывают гуманитарным дисциплинам, естественно научным оставляя анализ, практический подход и сухой язык формул и цифр. Математику к гуманитарным предметам никак не отнесешь. Но без творчеств в «царице всех наук» далеко не уедешь – об этом людям известно с давних пор. Со времен Пифагора, например.

    Школьные учебники, к сожалению, обычно не объясняют, что в математике важно не только зубрить теоремы, аксиомы и формулы. Важно понимать и чувствовать ее фундаментальные принципы. И при этом попробовать освободить свой ум от штампов и азбучных истин – только в таких условиях рождаются все великие открытия.

    К таким открытиям можно отнести и то, которое сегодня мы знаем как теорему Пифагора. С его помощью мы попробуем показать, что математика не только может, но и должна быть увлекательной. И что это приключение подходит не только ботаникам в толстых очках, а всем, кто крепок умом и силен духом.

    Из истории вопроса

    Строго говоря, хоть теорема и называется «теоремой Пифагора», сам Пифагор ее не открывал. Прямоугольный треугольник и его особенные свойства изучались задолго до него. Есть две полярных точки зрения на этот вопрос. По одной версии Пифагор первым нашел полноценное доказательство теоремы. По другой доказательство не принадлежит авторству Пифагора.

    Сегодня уже не проверишь, кто прав, а кто заблуждается. Известно лишь, что доказательства Пифагора, если оно когда-либо существовало, не сохранилось. Впрочем, высказываются предположения, что знаменитое доказательство из «Начал» Евклида может принадлежать как раз Пифагору, и Евклид его только зафиксировал.

    Также сегодня известно, что задачи о прямоугольном треугольнике встречаются в египетских источниках времен фараона Аменемхета I, на вавилонских глиняных табличках периода правления царя Хаммурапи, в древнеиндийском трактате «Сульва сутра» и древнекитайском сочинении «Чжоу-би суань цзинь».

    Как видите, теорема Пифагора занимала умы математиков с древнейших времен. Подтверждением служит и около 367 разнообразных доказательств, существующих сегодня. В этом с ней не может тягаться ни одна другая теорема. Среди знаменитых авторов доказательств можно вспомнить Леонардо да Винчи и двадцатого президента США Джеймса Гарфилда. Все это говорит о чрезвычайной важности этой теоремы для математики: из нее выводится или так или иначе с нею связано большинство теорем геометрии.

    Доказательства теоремы Пифагора

    В школьных учебниках в основном приводят алгебраические доказательства. Но суть теоремы в геометрии, так что давайте рассмотрим в первую очередь те доказателства знаменитой теоремы, которые опираются на эту науку.

    Доказательство 1

    Для самого простого доказательства теоремы Пифагора для прямоугольного треугольника нужно задать идеальные условия: пусть треугольник будет не только прямоугольным, но и равнобедренным. Есть основания полагать, что именно такой треугольник первоначально рассматривали математики древности.

    Утверждение «квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах» можно проиллюстрировать следующим чертежом:

    Посмотрите на равнобедренный прямоугольный треугольник ABC: На гипотенузе АС можно построить квадрат, состоящий из четырех треугольников, равных исходному АВС. А на катетах АВ и ВС построено по квадрату, каждый из которых содержит по два аналогичных треугольника.

    Кстати, этот чертеж лег в основу многочисленных анекдотов и карикатур, посвященных теореме Пифагора. Самый знаменитый, пожалуй, это «Пифагоровы штаны во все стороны равны» :

    Доказательство 2

    Этот метод сочетает в себе алгебру и геометрию и может рассматриваться как вариант древнеиндийского доказательства математика Бхаскари.

    Постройте прямоугольный треугольник со сторонами a, b и c (рис.1). Затем постройте два квадрата со сторонами, равными сумме длин двух катетов, – (a+b) . В каждом из квадратов выполните построения, как на рисунках 2 и 3.

    В первом квадрате постройте четыре таких же треугольника, как на рисунке 1. В результате получаться два квадрата: один со стороной a, второй со стороной b .

    Во втором квадрате четыре построенных аналогичных треугольника образуют квадрат со стороной, равной гипотенузе c .

    Сумма площадей построенных квадратов на рис.2 равна площади построенного нами квадрата со стороной с на рис.3. Это легко проверить, высчитав площади квадратов на рис. 2 по формуле. А площадь вписанного квадрата на рисунке 3. путем вычитания площадей четырех равных между собой вписанных в квадрат прямоугольных треугольников из площади большого квадрата со стороной (a+b) .

    Записав все это, имеем: a 2 +b 2 =(a+b) 2 – 2ab . Раскройте скобки, проведите все необходимые алгебраические вычисления и получите, что a 2 +b 2 = a 2 +b 2 . При этом площадь вписанного на рис.3. квадрата можно вычислить и по традиционной формуле S=c 2 . Т.е. a 2 +b 2 =c 2 – вы доказали теорему Пифагора.

    Доказательство 3

    Само же древнеиндийское доказательство описано в XII веке в трактате «Венец знания» («Сиддханта широмани») и в качестве главного аргумента автор использует призыв, обращенный к математическим талантам и наблюдательности учеников и последователей: «Смотри!».

    Но мы разберем это доказательство более подробно:

    Внутри квадрата постройте четыре прямоугольных треугольника так, как это обозначено на чертеже. Сторону большого квадрата, она же гипотенуза, обозначим с . Катеты треугольника назовем а и b . В соответствии с чертежом сторона внутреннего квадрата это (a-b) .

    Используйте формулу площади квадрата S=c 2 , чтобы вычислить площадь внешнего квадрата. И одновременно высчитайте ту же величину, сложив площадь внутреннего квадрата и площади всех четырех прямоугольных треугольников: (a-b) 2 2+4*1\2*a*b .

    Вы можете использовать оба варианта вычисления площади квадрата, чтобы убедиться: они дадут одинаковый результат. И это дает вам право записать, что c 2 =(a-b) 2 +4*1\2*a*b . В результате решения вы получите формулу теоремы Пифагора c 2 =a 2 +b 2 . Теорема доказана.

    Доказательство 4

    Это любопытное древнекитайское доказательство получило название «Стул невесты» - из-за похожей на стул фигуры, которая получается в результате всех построений:

    В нем используется чертеж, который мы уже видели на рис.3 во втором доказательстве. А внутренний квадрат со стороной с построен так же, как в древнеиндийском доказательстве, приведенном выше.

    Если мысленно отрезать от чертежа на рис.1 два зеленых прямоугольных треугольника, перенести их к противоположным сторонам квадрата со стороной с и гипотенузами приложить к гипотенузам сиреневых треугольников, получится фигура под названием «стул невесты» (рис.2). Для наглядности можно то же самое проделать с бумажными квадратами и треугольниками. Вы убедитесь, что «стул невесты» образуют два квадрата: маленькие со стороной b и большой со стороной a .

    Эти построения позволили древнекитайским математикам и нам вслед за ними прийти к выводу, что c 2 =a 2 +b 2 .

    Доказательство 5

    Это еще один способ найти решение для теоремы Пифагора, опираясь на геометрию. Называется он «Метод Гарфилда».

    Постройте прямоугольный треугольник АВС . Нам надо доказать, что ВС 2 =АС 2 +АВ 2 .

    Для этого продолжите катет АС и постройте отрезок CD , который равен катету АВ . Опустите перпендикулярный AD отрезок ED . Отрезки ED и АС равны. Соедините точки Е и В , а также Е и С и получите чертеж, как на рисунке ниже:

    Чтобы доказать терему, мы вновь прибегаем к уже опробованному нами способу: найдем площадь получившейся фигуры двумя способами и приравняем выражения друг к другу.

    Найти площадь многоугольника ABED можно, сложив площади трех треугольников, которые ее образуют. Причем один из них, ЕСВ , является не только прямоугольным, но и равнобедренным. Не забываем также, что АВ=CD , АС=ED и ВС=СЕ – это позволит нам упростить запись и не перегружать ее. Итак, S ABED =2*1/2(AB*AC)+1/2ВС 2 .

    При этом очевидно, что ABED – это трапеция. Поэтому вычисляем ее площадь по формуле: S ABED =(DE+AB)*1/2AD . Для наших вычислений удобней и наглядней представить отрезок AD как сумму отрезков АС и CD .

    Запишем оба способа вычислить площадь фигуры, поставив между ними знак равенства: AB*AC+1/2BC 2 =(DE+AB)*1/2(AC+CD) . Используем уже известное нам и описанное выше равенство отрезков, чтобы упростить правую часть записи: AB*AC+1/2BC 2 =1/2(АВ+АС) 2 . А теперь раскроем скобки и преобразуем равенство: AB*AC+1/2BC 2 =1/2АС 2 +2*1/2(АВ*АС)+1/2АВ 2 . Закончив все преобразования, получим именно то, что нам и надо: ВС 2 =АС 2 +АВ 2 . Мы доказали теорему.

    Конечно, этот список доказательств далеко не полный. Теорему Пифагора также можно доказать с помощью векторов, комплексных чисел, дифференциальный уравнений, стереометрии и т.п. И даже физики: если, например, в аналогичные представленным на чертежах квадратные и треугольные объемы залить жидкость. Переливая жидкость, можно доказать равенство площадей и саму теорему в итоге.

    Пару слов о Пифагоровых тройках

    Этот вопрос мало или вообще не изучается в школьной программе. А между тем он является очень интересным и имеет большое значение в геометрии. Пифагоровы тройки применяются для решения многих математических задач. Представление о них может пригодиться вам в дальнейшем образовании.

    Так что же такое Пифагоровы тройки? Так называют натуральные числа, собранные по трое, сумма квадратов двух из которых равна третьему числу в квадрате.

    Пифагоровы тройки могут быть:

    • примитивными (все три числа – взаимно простые);
    • не примитивными (если каждое число тройки умножить на одно и то же число, получится новая тройка, которая не является примитивной).

    Еще до нашей эры древних египтян завораживала мания чисел Пифагоровых троек: в задачах они рассматривали прямоугольный треугольник со сторонами 3,4 и 5 единиц. К слову, любой треугольник, стороны которого равны числам из пифагоровой тройки, по умолчанию является прямоугольным.

    Примеры Пифагоровых троек: (3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12, 15), (8, 15, 17), (12, 16, 20), (15, 20, 25), (7, 24, 25), (10, 24, 26), (20, 21, 29), (18, 24, 30), (10, 30, 34), (21, 28, 35), (12, 35, 37), (15, 36, 39), (24, 32, 40), (9, 40, 41), (27, 36, 45), (14, 48, 50), (30, 40, 50) и т.д.

    Практическое применение теоремы

    Теорема Пифагора находит применение не только в математике, но и в архитектуре и строительстве, астрономии и даже литературе.

    Сначала про строительство: теорема Пифагора находит в нем широкое применение в задачах разного уровня сложности. Например, посмотрите на окно в романском стиле:

    Обозначим ширину окна как b , тогда радиус большой полуокружности можно обозначить как R и выразить через b: R=b/2 . Радиус меньших полуокружностей также выразим через b: r=b/4 . В этой задаче нас интересует радиус внутренней окружности окна (назовем его p ).

    Теорема Пифагора как раз и пригодиться, чтобы вычислить р . Для этого используем прямоугольный треугольник, который на рисунке обозначен пунктиром. Гипотенуза треугольника состоит из двух радиусов: b/4+p . Один катет представляет собой радиус b/4 , другой b/2-p . Используя теорему Пифагора, запишем: (b/4+p) 2 =(b/4) 2 +(b/2-p) 2 . Далее раскроем скобки и получим b 2 /16+ bp/2+p 2 =b 2 /16+b 2 /4-bp+p 2 . Преобразуем это выражение в bp/2=b 2 /4-bp . А затем разделим все члены на b , приведем подобные, чтобы получить 3/2*p=b/4 . И в итоге найдем, что p=b/6 – что нам и требовалось.

    С помощью теоремы можно вычислить длину стропила для двускатной крыши. Определить, какой высоты вышка мобильной связи нужна, чтобы сигнал достигал определенного населенного пункта. И даже устойчиво установить новогоднюю елку на городской площади. Как видите, эта теорема живет не только на страницах учебников, но и часто бывает полезна в реальной жизни.

    Что касается литературы, то теорема Пифагора вдохновляла писателей со времен античности и продолжает это делать в наше время. Например, немецкого писателя девятнадцатого века Адельберта фон Шамиссо она вдохновила на написание сонета:

    Свет истины рассеется не скоро,
    Но, воссияв, рассеется навряд
    И, как тысячелетия назад,
    Не вызовет сомнения и спора.

    Мудрейшие, когда коснется взора
    Свет истины, богов благодарят;
    И сто быков, заколоты, лежат –
    Ответный дар счастливца Пифагора.

    С тех пор быки отчаянно ревут:
    Навеки всполошило бычье племя
    Событие, помянутое тут.

    Им кажется: вот-вот настанет время,
    И сызнова их в жертву принесут
    Какой-нибудь великой теореме.

    (перевод Виктора Топорова)

    А в двадцатом веке советский писатель Евгений Велтистов в книге «Приключения Электроника» доказательствам теоремы Пифагора отвел целую главу. И еще полглавы рассказу о двухмерном мире, какой мог бы существовать, если бы теорема Пифагора стала основополагающим законом и даже религией для отдельно взятого мира. Жить в нем было бы гораздо проще, но и гораздо скучнее: например, там никто не понимает значения слов «круглый» и «пушистый».

    А еще в книге «Приключения Электроника» автор устами учителя математики Таратара говорит: «Главное в математике – движение мысли, новые идеи». Именно этот творческий полет мысли порождает теорема Пифагора – не зря у нее столько разнообразных доказательств. Она помогает выйти за границы привычного, и на знакомые вещи посмотреть по-новому.

    Заключение

    Эта статья создана, чтобы вы могли заглянуть за пределы школьной программы по математике и узнать не только те доказательства теоремы Пифагора, которые приведены в учебниках «Геометрия 7-9» (Л.С. Атанасян, В.Н. Руденко) и «Геометрия 7-11» (А.В. Погорелов), но и другие любопытные способы доказать знаменитую теорему. А также увидеть примеры, как теорема Пифагора может применяться в обычной жизни.

    Во-первых, эта информация позволит вам претендовать на более высокие баллы на уроках математики – сведения по предмету из дополнительных источников всегда высоко оцениваются.

    Во-вторых, нам хотелось помочь вам прочувствовать, насколько математика интересная наука. Убедиться на конкретных примерах, что в ней всегда есть место творчеству. Мы надеемся, что теорема Пифагора и эта статья вдохновят вас на самостоятельные поиски и волнующие открытия в математике и других науках.

    Расскажите нам в комментариях, показались ли вам приведенные в статье доказательства интересными. Пригодились ли вам эти сведения в учебе. Напишите нам, что думаете о теореме Пифагора и этой статье – нам будет приятно обсудить все это с вами.

    сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

    В одном можно быть уверенным на все сто процентов, что на вопрос, чему равен квадрат гипотенузы, любой взрослый человек смело ответит: «Сумме квадратов катетов». Эта теорема прочно засела в сознании каждого образованного человека, но достаточно лишь попросить кого-либо ее доказать, и тут могут возникнуть сложности. Поэтому давайте вспомним и рассмотрим разные способы доказательства теоремы Пифагора.

    Краткий обзор биографии

    Теорема Пифагора знакома практически каждому, но почему-то биография человека, который произвел ее на свет, не так популярна. Это поправимо. Поэтому прежде чем изучить разные способы доказательства теоремы Пифагора, нужно кратко познакомиться с его личностью.

    Пифагор - философ, математик, мыслитель родом из Сегодня очень сложно отличить его биографию от легенд, которые сложились в память об этом великом человеке. Но как следует из трудов его последователей, Пифагор Самосский родился на острове Самос. Его отец был обычный камнерез, а вот мать происходила из знатного рода.

    Судя по легенде, появление на свет Пифагора предсказала женщина по имени Пифия, в чью честь и назвали мальчика. По ее предсказанию рожденный мальчик должен был принести много пользы и добра человечеству. Что вообще-то он и сделал.

    Рождение теоремы

    В юности Пифагор переехал с в Египет, чтобы встретиться там с известными египетскими мудрецами. После встречи с ними он был допущен к обучению, где и познал все великие достижения египетской философии, математики и медицины.

    Вероятно, именно в Египте Пифагор вдохновился величеством и красотой пирамид и создал свою великую теорию. Это может шокировать читателей, но современные историки считают, что Пифагор не доказывал свою теорию. А лишь передал свое знание последователям, которые позже и завершили все необходимые математические вычисления.

    Как бы там ни было, сегодня известна не одна методика доказательства данной теоремы, а сразу несколько. Сегодня остается лишь гадать, как именно древние греки производили свои вычисления, поэтому здесь рассмотрим разные способы доказательства теоремы Пифагора.

    Теорема Пифагора

    Прежде чем начинать какие-либо вычисления, нужно выяснить, какую теорию предстоит доказать. Теорема Пифагора звучит так: «В треугольнике, у которого один из углов равен 90 о, сумма квадратов катетов равна квадрату гипотенузы».

    Всего существует 15 разных способов доказательства теоремы Пифагора. Это достаточно большая цифра, поэтому уделим внимание самым популярным из них.

    Способ первый

    Сначала обозначим, что нам дано. Эти данные будут распространяться и на другие способы доказательств теоремы Пифагора, поэтому стоит сразу запомнить все имеющееся обозначения.

    Допустим, дан прямоугольный треугольник, с катетами а, в и гипотенузой, равной с. Первый способ доказательства основывается на том, что из прямоугольного треугольника нужно дорисовать квадрат.

    Чтобы это сделать, нужно к катету длиной а дорисовать отрезок равный катету в, и наоборот. Так должно получиться две равные стороны квадрата. Остается только нарисовать две параллельные прямые, и квадрат готов.

    Внутри получившейся фигуры нужно начертить еще один квадрат со стороной равной гипотенузе исходного треугольника. Для этого от вершин ас и св нужно нарисовать два параллельных отрезка равных с. Таким образом, получиться три стороны квадрата, одна из которых и есть гипотенуза исходного прямоугольного треугольники. Остается лишь дочертить четвертый отрезок.

    На основании получившегося рисунка можно сделать вывод, что площадь внешнего квадрата равна (а+в) 2 . Если заглянуть внутрь фигуры, можно увидеть, что помимо внутреннего квадрата в ней имеется четыре прямоугольных треугольника. Площадь каждого равна 0,5ав.

    Поэтому площадь равна: 4*0,5ав+с 2 =2ав+с 2

    Отсюда (а+в) 2 =2ав+с 2

    И, следовательно, с 2 =а 2 +в 2

    Теорема доказана.

    Способ два: подобные треугольники

    Данная формула доказательства теоремы Пифагора была выведена на основании утверждения из раздела геометрии о подобных треугольниках. Оно гласит, что катет прямоугольного треугольника - среднее пропорциональное для его гипотенузы и отрезка гипотенузы, исходящего из вершины угла 90 о.

    Исходные данные остаются те же, поэтому начнем сразу с доказательства. Проведем перпендикулярный стороне АВ отрезок СД. Основываясь на вышеописанном утверждении катеты треугольников равны:

    АС=√АВ*АД, СВ=√АВ*ДВ.

    Чтобы ответить на вопрос, как доказать теорему Пифагора, доказательство нужно проложить возведением в квадрат обоих неравенств.

    АС 2 =АВ*АД и СВ 2 =АВ*ДВ

    Теперь нужно сложить получившиеся неравенства.

    АС 2 + СВ 2 =АВ*(АД*ДВ), где АД+ДВ=АВ

    Получается, что:

    АС 2 + СВ 2 =АВ*АВ

    И, следовательно:

    АС 2 + СВ 2 =АВ 2

    Доказательство теоремы Пифагора и различные способы ее решения нуждаются в разностороннем подходе к данной задаче. Однако этот вариант является одним из простейших.

    Еще одна методика расчетов

    Описание разных способов доказательства теоремы Пифагора могут ни о чем не сказать, до тех самых пор пока самостоятельно не приступишь к практике. Многие методики предусматривают не только математические расчеты, но и построение из исходного треугольника новых фигур.

    В данном случае необходимо от катета ВС достроить еще один прямоугольный треугольник ВСД. Таким образом, теперь имеется два треугольника с общим катетом ВС.

    Зная, что площади подобных фигур имеют соотношение как квадраты их сходных линейных размеров, то:

    S авс * с 2 - S авд *в 2 =S авд *а 2 - S всд *а 2

    S авс *(с 2 -в 2)=а 2 *(S авд -S всд)

    с 2 -в 2 =а 2

    с 2 =а 2 +в 2

    Поскольку из разных способов доказательств теоремы Пифагора для 8 класса этот вариант едва ли подойдет, можно воспользоваться следующей методикой.

    Самый простой способ доказать теорему Пифагора. Отзывы

    Как полагают историки, этот способ был впервые использован для доказательства теоремы еще в древней Греции. Он является самым простым, так как не требует абсолютно никаких расчетов. Если правильно начертить рисунок, то доказательство утверждения, что а 2 +в 2 =с 2 , будет видно наглядно.

    Условия для данного способа будет немного отличаться от предыдущего. Чтобы доказать теорему, предположим, что прямоугольный треугольник АВС - равнобедренный.

    Гипотенузу АС принимаем за сторону квадрата и дочерчиваем три его стороны. Кроме этого необходимо провести две диагональные прямые в получившемся квадрате. Таким образом, чтобы внутри него получилось четыре равнобедренных треугольника.

    К катетам АВ и СВ так же нужно дочертить по квадрату и провести по одной диагональной прямой в каждом из них. Первую прямую чертим из вершины А, вторую - из С.

    Теперь нужно внимательно всмотреться в получившийся рисунок. Поскольку на гипотенузе АС лежит четыре треугольника, равные исходному, а на катетах по два, это говорит о правдивости данной теоремы.

    Кстати, благодаря данной методике доказательства теоремы Пифагора и появилась на свет знаменитая фраза: «Пифагоровы штаны во все стороны равны».

    Доказательство Дж. Гарфилда

    Джеймс Гарфилд - двадцатый президент Соединенных Штатов Америки. Кроме того, что он оставил свой след в истории как правитель США, он был еще и одаренным самоучкой.

    В начале своей карьеры он был обычным преподавателем в народной школе, но вскоре стал директором одного из высших учебных заведений. Стремление к саморазвитию и позволило ему предложить новую теорию доказательства теоремы Пифагора. Теорема и пример ее решения выглядит следующим образом.

    Сначала нужно начертить на листе бумаги два прямоугольных треугольника таким образом, чтобы катет одного из них был продолжением второго. Вершины этих треугольников нужно соединить, чтобы в конечном итоге получилась трапеция.

    Как известно, площадь трапеции равна произведению полусуммы ее оснований на высоту.

    S=а+в/2 * (а+в)

    Если рассмотреть получившуюся трапецию, как фигуру, состоящую из трех треугольников, то ее площадь можно найти так:

    S=ав/2 *2 + с 2 /2

    Теперь необходимо уравнять два исходных выражения

    2ав/2 + с/2=(а+в) 2 /2

    с 2 =а 2 +в 2

    О теореме Пифагора и способах ее доказательства можно написать не один том учебного пособия. Но есть ли в нем смысл, когда эти знания нельзя применить на практике?

    Практическое применение теоремы Пифагора

    К сожалению, в современных школьных программах предусмотрено использование данной теоремы только в геометрических задачах. Выпускники скоро покинут школьные стены, так и не узнав, а как они могут применить свои знания и умения на практике.

    На самом же деле использовать теорему Пифагора в своей повседневной жизни может каждый. Причем не только в профессиональной деятельности, но и в обычных домашних делах. Рассмотрим несколько случаев, когда теорема Пифагора и способы ее доказательства могут оказаться крайне необходимыми.

    Связь теоремы и астрономии

    Казалось бы, как могут быть связаны звезды и треугольники на бумаге. На самом же деле астрономия - это научная сфера, в которой широко используется теорема Пифагора.

    Например, рассмотрим движение светового луча в космосе. Известно, что свет движется в обе стороны с одинаковой скоростью. Траекторию АВ, которой движется луч света назовем l . А половину времени, которое необходимо свету, чтобы попасть из точки А в точку Б, назовем t . И скорость луча - c . Получается, что: c*t=l

    Если посмотреть на этот самый луч из другой плоскости, например, из космического лайнера, который движется со скоростью v, то при таком наблюдении тел их скорость изменится. При этом даже неподвижные элементы станут двигаться со скоростью v в обратном направлении.

    Допустим, комический лайнер плывет вправо. Тогда точки А и В, между которыми мечется луч, станут двигаться влево. Причем, когда луч движется от точки А в точку В, точка А успевает переместиться и, соответственно, свет уже прибудет в новую точку С. Чтобы найти половину расстояния, на которое сместилась точка А, нужно скорость лайнера умножить на половину времени путешествия луча (t").

    А чтобы найти, какое расстояние за это время смог пройти луч света, нужно обозначить половину пути новой буковой s и получить следующее выражение:

    Если представить, что точки света С и В, а также космический лайнер - это вершины равнобедренного треугольника, то отрезок от точки А до лайнера разделит его на два прямоугольных треугольника. Поэтому благодаря теореме Пифагора можно найти расстояние, которое смог пройти луч света.

    Этот пример, конечно, не самый удачный, так как только единицам может посчастливиться опробовать его на практике. Поэтому рассмотрим более приземленные варианты применения этой теоремы.

    Радиус передачи мобильного сигнала

    Современную жизнь уже невозможно представить без существования смартфонов. Но много ли было бы от них прока, если бы они не могли соединять абонентов посредством мобильной связи?!

    Качество мобильной связи напрямую зависит от того, на какой высоте находиться антенна мобильного оператора. Для того чтобы вычислить, каком расстоянии от мобильной вышки телефон может принимать сигнал, можно применить теорему Пифагора.

    Допустим, нужно найти приблизительную высоту стационарной вышки, чтобы она могла распространять сигнал в радиусе 200 километров.

    АВ (высота вышки) = х;

    ВС (радиус передачи сигнала) = 200 км;

    ОС (радиус земного шара) = 6380 км;

    ОВ=ОА+АВОВ=r+х

    Применив теорему Пифагора, выясним, что минимальная высота вышки должна составить 2,3 километра.

    Теорема Пифагора в быту

    Как ни странно, теорема Пифагора может оказаться полезной даже в бытовых делах, таких как определение высоты шкафа-купе, например. На первый взгляд, нет необходимости использовать такие сложные вычисления, ведь можно просто снять мерки с помощью рулетки. Но многие удивляются, почему в процессе сборки возникают определенные проблемы, если все мерки были сняты более чем точно.

    Дело в том, что шкаф-купе собирается в горизонтальном положении и только потом поднимается и устанавливается к стене. Поэтому боковина шкафа в процессе подъема конструкции должна свободно проходить и по высоте, и по диагонали помещения.

    Предположим, имеется шкаф-купе глубиной 800 мм. Расстояние от пола до потолка - 2600 мм. Опытный мебельщик скажет, что высота шкафа должна быть на 126 мм меньше, чем высота помещения. Но почему именно на 126 мм? Рассмотрим на примере.

    При идеальных габаритах шкафа проверим действие теоремы Пифагора:

    АС=√АВ 2 +√ВС 2

    АС=√2474 2 +800 2 =2600 мм - все сходится.

    Допустим, высота шкафа равна не 2474 мм, а 2505 мм. Тогда:

    АС=√2505 2 +√800 2 =2629 мм.

    Следовательно, этот шкаф не подойдет для установки в данном помещении. Так как при поднятии его в вертикальное положение можно нанести ущерб его корпусу.

    Пожалуй, рассмотрев разные способы доказательства теоремы Пифагора разными учеными, можно сделать вывод, что она более чем правдива. Теперь можно использовать полученную информацию в своей повседневной жизни и быть полностью уверенным, что все расчеты будут не только полезны, но и верны.