Аксиоматический метод построения теорий. Аксиоматический метод: описание, этапы становления и примеры Возникновение и развитие аксиоматического метода познания

Аксиоматический метод является способом построения научных теорий, которые уже установлены. В основе лежат аргументы, факты, утверждения, не требующие доказательств или опровержения. По сути, это вариант знания представлен в виде дедуктивной структуры, в которую изначально входит логическое обоснование содержания из основоположений - аксиом.

Этот метод не может быть открытием, а является только классифицирующим понятием. Он больше подойдет для преподавания. В основе присутствуют исходные положения, а остальные сведения вытекают как логическое следствие. Где находится аксиоматический метод построения теории? Он лежит в структуре большинства современных и устоявшихся наук.

Становление и развитие понятия аксиоматического метода, определение слова

Прежде всего, это понятие возникло в Древней Греции благодаря Евклиду. Он стал основоположником аксиоматического метода в геометрии. Сегодня он распространен во всех науках, но более всего в математике. Этот способ формируется на основе устоявшихся утверждений, а последующие теории выводятся путем логического построения.

Это объясняется следующим образом: существуют слова и понятия, которые определяются другими понятиями. В результате исследователи пришли к выводу, что существуют элементарные выводы, обоснованные и являющиеся постоянными - основными, то есть аксиомами. К примеру, доказывая теорему, обычно опираются на факты, которые уже устоявшиеся и не требуют опровержения.

Однако до этого их требовалось обосновать. В процессе получается, что неаргументированное утверждение принимается за аксиому. Опираясь на набор постоянных понятий, доказывают другие теоремы. Они составляют основу планиметрии и являются логическим строением геометрии. Устоявшиеся аксиомы в этой науке определяются как объекты любой природы. Они, в свою очередь, обладают свойствами, которые указаны в постоянных понятиях.

Дальнейшие исследования аксиом

Способ рассматривался как идеальный вплоть до девятнадцатого столетия. Логические средства поиска основных понятий еще в те времена не изучались, но в системе Евклида можно наблюдать структуру получения содержательных последствий из аксиоматического метода. Исследования ученого показали идею о том, как получить полную систему геометрических знаний на основе чисто дедуктивного пути. Им предлагалось сравнительно небольшое количество утвержденных аксиом, которые истинны наглядно.

Заслуги древнегреческих умов

Евклид доказал множество понятий, причем некоторые из них были обоснованы. Однако большинство приписывает эти заслуги Пифагору, Демокриту и Гиппократу. Последний составил полный курс геометрии. Правда, позже в Александрии вышел сборник "Начало", автором которого являлся Евклид. Затем, он был переименован в "Элементарную геометрию". Спустя некоторое время его начали критиковать на основе некоторых причин:

  • все величины строились только с помощью линейки и циркуля;
  • геометрия и арифметика были разъединены и доказывались с учетом обоснованных чисел и понятий;
  • аксиомы, некоторые из них, в частности, пятый постулат, предлагали вычеркнуть из общего списка.

В результате в XIX веке возникает неевклидовая геометрия, в которой отсутствует объективно истинный постулат. Это действие дало толчок для дальнейшего развития геометрической системы. Таким образом, к дедуктивным способам построения пришли математические исследователи.

Развитие математического знания на основе аксиом

Когда начала развиваться новая система геометрии, изменился и аксиоматический метод. В математике стали чаще обращаться к чисто дедуктивному построению теории. В результате в современной числовой логике возникла целая система доказательств, которая является главным разделом всей науки. В математической структуре стали понимать необходимость обоснования.

Так, уже к концу столетия сформировались четкие задачи и построение сложных понятий, которые из сложной теоремы сводились к простейшему логическому утверждению. Таким образом, неевклидовая геометрия стимулировала прочную основу для дальнейшего существования аксиоматического метода, а также для решения проблем общего характера математических конструкций:

  • непротиворечивости;
  • полноты;
  • независимости.

В процессе появился и успешно получил развитие способ интерпретации. Этот метод описывается так: для каждого выходного понятия в теории поставлен математический объект, совокупность которых называется полем. Высказывание об указанных элементах может быть ложным или истинным. В результате утверждения получают названия в зависимости от выводов.

Особенности теории интерпретации

Как правило, поле и свойства также подвергаются рассмотрению в математической системе, и она, в свою очередь, может стать аксиоматической. Интерпретация доказывает утверждения, в которых имеется относительная непротиворечивость. Дополнительным вариантом выступает ряд фактов, при которых теория становится противоречивой.

По сути, условие в ряде случаев выполняется. В результате получается, что, если в высказываниях одного из утверждений присутствуют два ложных или истинных понятия, то оно считается отрицательным или положительным. Таким методом была доказана непротиворечивость геометрии Евклида. При интерпретационном методе можно решить вопрос о независимости систем аксиом. Если нужно опровергнуть какую-либо теорию, то достаточно доказать, что одно из понятий не выводится из другого и ошибочно.

Однако наряду с успешными утверждениями, способ имеет и слабые стороны. Непротиворечивость и независимость систем аксиом решаются как вопросы, которые получают результаты, носящие относительный характер. Единственное важное достижение интерпретации - обнаружение роли арифметики как структуры, в которой вопрос о непротиворечивости сводится к ряду иных наук.

Современное развитие аксиоматической математики

Аксиоматический метод стал развиваться в работе Гилберта. В его школе было уточнено само понятие теории и формальной системы. В результате возникла общая система, а математические объекты стали точными. Кроме того, появилась возможность решить вопросы обоснования. Таким образом, формальная система строится точным классом, в котором находятся подсистемы формул и теорем.

Чтобы построить эту структуру, нужно только руководствоваться техническими удобствами, потому что они не имеют никакой смысловой нагрузки. Они могут быть вписаны знаками, символами. То есть, по сути, сама система строится таким образом, чтобы формальную теорию можно было применять адекватно и в полной мере.

В результате выливается конкретная математическая цель или задача в теорию на основе фактического содержания или дедуктивного умозаключения. Язык числовой науки переводят на формальную систему, в процессе любое конкретное и осмысленное выражение определяется формулой.

Метод формализации

При естественном положении вещей подобный способ сможет решать такие глобальные вопросы, как непротиворечивость, а также строить положительную суть математических теорий по выведенным формулам. Причем в основном все это будет решать формальная система на основе доказанных утверждений. Математические теории постоянно осложнялись обоснованиями, и Гилберт предложил исследовать эту структуру при помощи финитных методов. Но это программа провалилась. Результаты Геделя уже в двадцатом столетии привели к следующим выводам:

  • естественная непротиворечивость невозможна за счет того, что формализованная арифметика или другая подобная наука из этой системы будет неполной;
  • появились неразрешимые формулы;
  • утверждения недоказуемы.

Истинные суждения и разумное финитное доведение считаются формализуемыми. С учетом этого аксиоматический метод имеет определенные и четкие границы и возможности в рамках этой теории.

Результаты развития аксиом в трудах математиков

Несмотря на то что некоторые суждения были опровергнуты и не получили должного развития, способ постоянных понятий играет значительную роль в формировании основ математики. Кроме этого, интерпретация и аксиоматический метод в науке выявили фундаментальные результаты непротиворечивости, независимости утверждений выбора и гипотез во множественной теории.

В решении вопроса непротиворечивости главное применить не только устоявшиеся понятия. Их нужно также дополнить идеями, концепциями и средствами финитного доведения. В данном случае рассматриваются различные взгляды, способы, теории, которые должны учитывать логический смысл и обоснование.

Непротиворечивость формальной системы указывает на подобное доведение арифметики, которая опирается на индукцию, счет, трансфинитное число. В научной области аксиоматизация является важнейшим инструментом, имеющим неопровержимые концепции и утверждения, берущиеся за основу.

Сущность исходных утверждений и их роль в теориях

Оценка аксиоматического метода указывает на то, что в его сущности лежит некая структура. Эту систему строят с выявления основополагающей концепции и фундаментальных утверждений, которые являются неопределяемыми. То же происходит и с теоремами, считающимися исходными и принимающимися без доказательств. В естественных науках за подобные утверждения выступают правила, допущения, законы.

Затем происходит процесс фиксации установленных баз для рассуждений. Как правило, сразу указывается, что из одного положения выводится другое, а в процессе выходят остальные, которые, в сущности, совпадают с дедуктивным методом.

Особенности системы в современности

В составе аксиоматической системы находятся:

  • логические выводы;
  • термины и определения;
  • частично неправильные утверждения и понятия.

В современной науке этот метод утратил абстрактность. В Евклидовой геометрической аксиоматизации в основе лежали интуитивные и истинные положения. И интерпретировалась теория единственным, естественным способом. Сегодня аксиома - это положение, которое само по себе очевидно, а соглашение, причем любое, может выступать как начальное, не требующее обоснования понятие. В результате исходные значения могут быть далекими от наглядности. Этот метод требует творческого подхода, знания взаимосвязей и исходной теории.

Основные принципы выведения заключений

Дедуктивно аксиоматический метод - это научное познание, строящееся по определенной схеме, в основе которой лежат правильно осознанные гипотезы, выводящие утверждения об Подобное умозаключение строится на основе логических структур, путем жесткого выведения. Аксиомы - изначально неопровержимые утверждения, не требующие доказательств.

При дедукции к исходным понятиям применяются определенные требования: непротиворечивости, полноты, независимости. Как показывает практика, первое условие основано на формально-логическом знании. То есть в теории не должны присутствовать значения истинности и ложности, ибо она уже не будет иметь значения и ценности.

Если такое условие не соблюдается, то она считается несовместной и в ней теряется какой-либо смысл, ибо теряется смысловая нагрузка между истиной и ложью. Дедуктивно аксиоматический метод является способом построения и обоснования научного знания.

Практическое применение метода

Аксиоматический метод построения научного знания имеет практическое применение. По сути, этот способ влияет и оказывает глобальное значение на математику, хотя это знание уже достигло своей вершины. Примеры аксиоматического метода следующие:

  • аффинные плоскости имеют три утверждения и определение;
  • теория эквивалентности обладает тремя доказательствами;
  • бинарные отношения подразделяются на систему определений, понятий и дополнительных упражнений.

Если нужно сформулировать исходное значение, то необходимо знать природу множеств и элементов. В сущности, аксиоматический метод лег в основу различных областей науки.

Аксиоматический метод впервые был успешно применен Евклидом для построения элементарной геометрии. С того времени этот метод претерпел значительную эволюцию, нашел многочисленные приложения не только в математике, но и во многих разделах точного естествознания (механика, оптика, электродинамика, теория относительности, космология и др.).

Развитие и совершенствование аксиоматического метода происходило по двум основным линиям: во-первых, обобщения самого метода и, во-вторых, разработки логической техники, используемой в процессе вывода теорем из аксиом. Чтобы яснее представить характер происшедших изменений, обратимся к первоначальной аксиоматике Евклида. Как известно, исходные понятия и аксиомы геометрии у него интерпретируются одним-единственным образом. Под точкой, прямой и плоскостью как основными понятиями геометрии подразумеваются идеализированные пространственные объекты, а сама геометрия рассматривается как учение о свойствах физического пространства. Постепенно выяснилось, что аксиомы Евклида оказываются верными не только для описания свойств геометрических, но и других математических и даже физических объектов. Так, если под точкой подразумевать тройку действительных чисел, под прямой, плоскостью - соответствующие линейные уравнения, то свойства всех этих негеометрических объектов будут удовлетворять геометрическим аксиомам Евклида. Еще более интересной является интерпретация этих аксиом с помощью физических объектов, например состояний механической и физико-химической системы или многообразия цветовых ощущений. Все это свидетельствует о том, что аксиомы геометрии можно интерпретировать с помощью объектов самой различной природы.

Такой абстрактный подход к аксиоматике в значительной мере был подготовлен открытием неевклидовых геометрий Н. И. Лобачевским, Я. Бойаи, К. Ф. Гауссом и Б. Риманом. Наиболее последовательное выражение новый взгляд на аксиомы как абстрактные формы, допускающие множество различных интерпретаций, нашел в известной работе Д. Гильберта «Основания геометрии» (1899г.). «Мы мыслим, - писал он в этой книге, - три различные системы вещей: вещи первой системы мы называем точками и обозначаем А, В, С,...; вещи второй системы мы называем прямыми и обозначаем а, b, с,...; вещи третьей системы мы называем плоскостями и обозначаем а, В, у,...». Отсюда видно, что под «точкой», «прямой» и «плоскостью» можно подразумевать любые системы объектов. Важно только, чтобы их свойства описывались соответствующими аксиомами. Дальнейший шаг на пути отвлечения от содержания аксиом связан с их символическим представлением в виде формул, а также точным заданием тех правил вывода, которые описывают, как из одних формул (аксиом) получаются другие формулы (теоремы). В результате этого содержательные рассуждения с понятиями на такой стадии исследования превращаются в некоторые операции с формулами по заранее предписанным правилам. Иначе говоря, содержательное мышление отображается здесь в исчислении. Аксиоматические системы подобного рода часто называют формализованными синтаксическими системами, или исчислениями.

Все три рассмотренных типа аксиоматизации находят применение в современной науке. К формализованным аксиоматическим системам прибегают главным образом при исследовании логических оснований той или иной науки. Наибольший размах такие исследования получили в математике в связи с обнаружением парадоксов теории множеств. Значительную роль формальные системы играют при создании специальных научных языков, с помощью которых удается максимальным образом устранить неточности обычного, естественного языка.

Некоторые ученые считают этот момент чуть ли не главным в процессе применения логико-математических методов в конкретных науках. Так, английский ученый И. Вуджер, являющийся одним из пионеров использования аксиоматического метода в биологии, полагает, что применение этого метода в биологии и других отраслях естествознания состоит в создании научно совершенного языка, в котором возможно исчисление. Основой для построения такого языка служит аксиоматический метод, выраженный в виде формализованной системы, или исчисления. В качестве алфавита формализованного языка служат исходные символы двух типов: логические и индивидуальные.

Логические символы отображают логические связи и отношения, общие для многих или большинства теорий. Индивидуальные символы обозначают объекты исследуемой теории, например математической, физической или биологической. Подобно тому как определенная последовательность букв алфавита образует слово, так и конечная совокупность упорядоченных символов образует формулы и выражения формализованного языка. Для отличия осмысленных выражений языка вводят понятие правильно построенной формулы. Чтобы закончить процесс построения искусственного языка, достаточно четко описать правила вывода или преобразования одних формул в другие и выделить некоторые правильно построенные формулы в качестве аксиом. Таким образом, построение формализованного языка происходит так же, как и построение содержательной аксиоматической системы. Поскольку содержательные рассуждения с формулами в первом случае недопустимы, то логический вывод следствий сводится здесь к выполнению точно предписанных операций обращения с символами и их комбинациями.

Главная цель использования формализованных языков в науке - критический анализ рассуждений, с помощью которых получается новое знание в науке. Поскольку в формализованных языках отображаются некоторые аспекты содержательных рассуждений, то они могут быть использованы также для оценки возможностей автоматизации интеллектуальной деятельности.

Абстрактные аксиоматические системы получили наибольшее применение в современной математике, для которой характерен чрезвычайно общий подход к предмету исследования. Вместо того чтобы говорить о конкретных числах, функциях, линиях, поверхностях, векторах и тому подобных объектах, современный математик рассматривает различные множества абстрактных объектов, свойства которых точно формулируются с помощью аксиом. Такие совокупности, или множества, вместе с описывающими их аксиомами теперь часто называют абстрактными математическими структурами.

Какие преимущества аксиоматический метод даст математике? Во-первых, он значительно расширяет границы применения математических методов и зачастую облегчает процесс исследования. При изучении конкретных явлений и процессов в той или иной области ученый может воспользоваться абстрактными аксиоматическими системами как готовыми орудиями анализа. Убедившись в том, что рассматриваемые явления удовлетворяют аксиомам некоторой математической теории, исследователь может без дополнительной трудоемкой работы сразу же воспользоваться всеми теоремами, которые следуют из аксиом. Аксиоматический подход избавляет специалиста конкретной науки от выполнения довольно сложного и трудного для него математического исследования.

Для математика этот метод дает возможность глубже понять объект исследований, выделить в нем главные направления, понять единство и связь разных методов и теорий. Единство, которое достигается с помощью аксиоматического метода, по образному выражению Н. Бурбаки, не есть единство, «которое дает скелет, лишенный жизни. Это питательный сок организма в полном развитии, податливый и плодотворный инструмент исследования...». Благодаря аксиоматическому методу, особенно в его формализованном виде, становится возможным полностью раскрыть логическую структуру различных теорий. В наиболее совершенном виде это относится к математическим теориям. В естественнонаучном знании приходится ограничиваться аксиоматизацией основного ядра теорий. Далее, применение аксиоматического метода дает возможность лучше контролировать ход наших рассуждений, добиваясь необходимой логической строгости. Однако главная ценность аксиоматизации, особенно в математике, состоит в том, что она выступает как метод исследования новых закономерностей, установления связей между понятиями и теориями, которые раньше казались обособленными друг от друга.

Ограниченное применение аксиоматического метода в естествознании объясняется прежде всего тем, что его теории постоянно должны контролироваться опытом.

В силу этого естественнонаучная теория никогда не стремится к полной законченности и замкнутости. Между тем в математике предпочитают иметь дело с системами аксиом, которые удовлетворяют требованию полноты. Но как показал К. Гёдель, всякая непротиворечивая система аксиом нетривиального характера не может быть полной.

Требование непротиворечивости системы аксиом гораздо существеннее требования их полноты. Если система аксиом будет противоречивой, она не будет представлять никакой ценности для познания. Ограничиваясь неполными системами, можно аксиоматизировать лишь основное содержание естественнонаучных теорий, оставляя возможность для дальнейшего развития и уточнения теории экспериментом. Даже такая ограниченная цель в ряде случаев оказывается весьма полезной, например для обнаружения некоторых неявных предпосылок и допущений теории, контроля полученных результатов, их систематизации и т.п.

Наиболее перспективным применение аксиоматического метода оказывается в тех науках, где используемые понятия обладают значительной стабильностью и где можно абстрагироваться от их изменения и развития.

Именно в этих условиях становится возможным выявить формально-логические связи между различными компонентами теории. Таким образом, аксиоматический метод в большей мере, чем гипотетико-дедуктивный, приспособлен для исследования готового, достигнутого знания.

Анализ возникновения знания, процесса его формирования требует обращения к материалистической диалектике, как наиболее глубокому и всестороннему учению о развитии.

Аксиоматический метод впервые был успешно применен Евклидом для построения элементарной геометрии. С того времени этот метод претерпел значительную эволюцию, нашел многочисленные приложения не только в математике, но и во многих разделах точного естествознания (механика, оптика, электродинамика, теория относительности, космология и др.).

Развитие и совершенствование аксиоматического метода происходило по двум основным линиям: во-первых, обобщения самого метода и, во-вторых, разработки логической техники, используемой в процессе вывода теорем из аксиом. Чтобы яснее представить характер происшедших изменений, обратимся к первоначальной аксиоматике Евклида. Как известно, исходные понятия и аксиомы геометрии у него интерпретируются одним-единственным образом. Под точкой, прямой и плоскостью как основными понятиями геометрии подразумеваются идеализированные пространственные объекты, а сама геометрия рассматривается как учение о свойствах физического пространства. Постепенно выяснилось, что аксиомы Евклида оказываются верными не только для описания свойств геометрических, но и других математических и даже физических объектов. Так, если под точкой подразумевать тройку действительных чисел, под прямой, плоскостью - соответствующие линейные уравнения, то свойства всех этих негеометрических объектов будут удовлетворять геометрическим аксиомам Евклида. Еще более интересной является интерпретация этих аксиом с помощью физических объектов, например состояний механической и физико-химической системы или многообразия цветовых ощущений. Все это свидетельствует о том, что аксиомы геометрии можно интерпретировать с помощью объектов самой различной природы.

Такой абстрактный подход к аксиоматике в значительной мере был подготовлен открытием неевклидовых геометрий Н. И. Лобачевским, Я. Бойаи, К. Ф. Гауссом и Б. Риманом. Наиболее последовательное выражение новый взгляд на аксиомы как абстрактные формы, допускающие множество различных интерпретаций, нашел в известной работе Д. Гильберта «Основания геометрии» (1899г.). «Мы мыслим, - писал он в этой книге, - три различные системы вещей: вещи первой системы мы называем точками и обозначаем А, В, С,...; вещи второй системы мы называем прямыми и обозначаем а, b, с,...; вещи третьей системы мы называем плоскостями и обозначаем а, В, у,...». Отсюда видно, что под «точкой», «прямой» и «плоскостью» можно подразумевать любые системы объектов. Важно только, чтобы их свойства описывались соответствующими аксиомами. Дальнейший шаг на пути отвлечения от содержания аксиом связан с их символическим представлением в виде формул, а также точным заданием тех правил вывода, которые описывают, как из одних формул (аксиом) получаются другие формулы (теоремы). В результате этого содержательные рассуждения с понятиями на такой стадии исследования превращаются в некоторые операции с формулами по заранее предписанным правилам. Иначе говоря, содержательное мышление отображается здесь в исчислении. Аксиоматические системы подобного рода часто называют формализованными синтаксическими системами, или исчислениями.

Все три рассмотренных типа аксиоматизации находят применение в современной науке. К формализованным аксиоматическим системам прибегают главным образом при исследовании логических оснований той или иной науки. Наибольший размах такие исследования получили в математике в связи с обнаружением парадоксов теории множеств. Значительную роль формальные системы играют при создании специальных научных языков, с помощью которых удается максимальным образом устранить неточности обычного, естественного языка.

Некоторые ученые считают этот момент чуть ли не главным в процессе применения логико-математических методов в конкретных науках. Так, английский ученый И. Вуджер, являющийся одним из пионеров использования аксиоматического метода в биологии, полагает, что применение этого метода в биологии и других отраслях естествознания состоит в создании научно совершенного языка, в котором возможно исчисление. Основой для построения такого языка служит аксиоматический метод, выраженный в виде формализованной системы, или исчисления. В качестве алфавита формализованного языка служат исходные символы двух типов: логические и индивидуальные.

Логические символы отображают логические связи и отношения, общие для многих или большинства теорий. Индивидуальные символы обозначают объекты исследуемой теории, например математической, физической или биологической. Подобно тому как определенная последовательность букв алфавита образует слово, так и конечная совокупность упорядоченных символов образует формулы и выражения формализованного языка. Для отличия осмысленных выражений языка вводят понятие правильно построенной формулы. Чтобы закончить процесс построения искусственного языка, достаточно четко описать правила вывода или преобразования одних формул в другие и выделить некоторые правильно построенные формулы в качестве аксиом. Таким образом, построение формализованного языка происходит так же, как и построение содержательной аксиоматической системы. Поскольку содержательные рассуждения с формулами в первом случае недопустимы, то логический вывод следствий сводится здесь к выполнению точно предписанных операций обращения с символами и их комбинациями.

Главная цель использования формализованных языков в науке - критический анализ рассуждений, с помощью которых получается новое знание в науке. Поскольку в формализованных языках отображаются некоторые аспекты содержательных рассуждений, то они могут быть использованы также для оценки возможностей автоматизации интеллектуальной деятельности.

Абстрактные аксиоматические системы получили наибольшее применение в современной математике, для которой характерен чрезвычайно общий подход к предмету исследования. Вместо того чтобы говорить о конкретных числах, функциях, линиях, поверхностях, векторах и тому подобных объектах, современный математик рассматривает различные множества абстрактных объектов, свойства которых точно формулируются с помощью аксиом. Такие совокупности, или множества, вместе с описывающими их аксиомами теперь часто называют абстрактными математическими структурами.

Какие преимущества аксиоматический метод даст математике? Во-первых, он значительно расширяет границы применения математических методов и зачастую облегчает процесс исследования. При изучении конкретных явлений и процессов в той или иной области ученый может воспользоваться абстрактными аксиоматическими системами как готовыми орудиями анализа. Убедившись в том, что рассматриваемые явления удовлетворяют аксиомам некоторой математической теории, исследователь может без дополнительной трудоемкой работы сразу же воспользоваться всеми теоремами, которые следуют из аксиом. Аксиоматический подход избавляет специалиста конкретной науки от выполнения довольно сложного и трудного для него математического исследования.

Для математика этот метод дает возможность глубже понять объект исследований, выделить в нем главные направления, понять единство и связь разных методов и теорий. Единство, которое достигается с помощью аксиоматического метода, по образному выражению Н. Бурбаки, не есть единство, «которое дает скелет, лишенный жизни. Это питательный сок организма в полном развитии, податливый и плодотворный инструмент исследования...». Благодаря аксиоматическому методу, особенно в его формализованном виде, становится возможным полностью раскрыть логическую структуру различных теорий. В наиболее совершенном виде это относится к математическим теориям. В естественнонаучном знании приходится ограничиваться аксиоматизацией основного ядра теорий. Далее, применение аксиоматического метода дает возможность лучше контролировать ход наших рассуждений, добиваясь необходимой логической строгости. Однако главная ценность аксиоматизации, особенно в математике, состоит в том, что она выступает как метод исследования новых закономерностей, установления связей между понятиями и теориями, которые раньше казались обособленными друг от друга.

Ограниченное применение аксиоматического метода в естествознании объясняется прежде всего тем, что его теории постоянно должны контролироваться опытом.

В силу этого естественнонаучная теория никогда не стремится к полной законченности и замкнутости. Между тем в математике предпочитают иметь дело с системами аксиом, которые удовлетворяют требованию полноты. Но как показал К. Гёдель, всякая непротиворечивая система аксиом нетривиального характера не может быть полной.

Требование непротиворечивости системы аксиом гораздо существеннее требования их полноты. Если система аксиом будет противоречивой, она не будет представлять никакой ценности для познания. Ограничиваясь неполными системами, можно аксиоматизировать лишь основное содержание естественнонаучных теорий, оставляя возможность для дальнейшего развития и уточнения теории экспериментом. Даже такая ограниченная цель в ряде случаев оказывается весьма полезной, например для обнаружения некоторых неявных предпосылок и допущений теории, контроля полученных результатов, их систематизации и т.п.

Наиболее перспективным применение аксиоматического метода оказывается в тех науках, где используемые понятия обладают значительной стабильностью и где можно абстрагироваться от их изменения и развития.

Именно в этих условиях становится возможным выявить формально-логические связи между различными компонентами теории. Таким образом, аксиоматический метод в большей мере, чем гипотетико-дедуктивный, приспособлен для исследования готового, достигнутого знания.

Анализ возникновения знания, процесса его формирования требует обращения к материалистической диалектике, как наиболее глубокому и всестороннему учению о развитии.

Аксиоматический метод впервые был успешно применен Евклидом для построения элементарной геометрии. С того времени этот метод претерпел значительную эволюцию, нашел многочисленные приложения не только в математике, но и во многих разделах точного естествознания (механика, оптика, электродинамика, теория относительности, космология и др.).

Развитие и совершенствование аксиоматического метода происходило по двум основным линиям: во-первых, обобщения самого метода и, во-вторых, разработки логической техники, используемой в процессе вывода теорем из аксиом. Чтобы яснее представить характер происшедших изменений, обратимся к первоначальной аксиоматике Евклида. Как известно, исходные понятия и аксиомы геометрии у него интерпретируются одним-единственным образом. Под точкой, прямой и плоскостью как основными понятиями геометрии подразумеваются идеализированные пространственные объекты, а сама геометрия рассматривается как учение о свойствах физического пространства. Постепенно выяснилось, что аксиомы Евклида оказываются верными не только для описания свойств геометрических, но и других математических и даже физических объектов. Так, если под точкой подразумевать тройку действительных чисел, под прямой, плоскостью - соответствующие линейные уравнения, то свойства всех этих негеометрических объектов будут удовлетворять геометрическим аксиомам Евклида. Еще более интересной является интерпретация этих аксиом с помощью физических объектов, например состояний механической и физико-химической системы или многообразия цветовых ощущений. Все это свидетельствует о том, что аксиомы геометрии можно интерпретировать с помощью объектов самой различной природы.

Такой абстрактный подход к аксиоматике в значительной мере был подготовлен открытием неевклидовых геометрий Н. И. Лобачевским, Я. Бойаи, К. Ф. Гауссом и Б. Риманом. Наиболее последовательное выражение новый взгляд на аксиомы как абстрактные формы, допускающие множество различных интерпретаций, нашел в известной работе Д. Гильберта «Основания геометрии» (1899г.). «Мы мыслим, - писал он в этой книге, - три различные системы вещей: вещи первой системы мы называем точками и обозначаем А, В, С,...; вещи второй системы мы называем прямыми и обозначаем а, b, с,...; вещи третьей системы мы называем плоскостями и обозначаем а, В, у,...». Отсюда видно, что под «точкой», «прямой» и «плоскостью» можно подразумевать любые системы объектов. Важно только, чтобы их свойства описывались соответствующими аксиомами. Дальнейший шаг на пути отвлечения от содержания аксиом связан с их символическим представлением в виде формул, а также точным заданием тех правил вывода, которые описывают, как из одних формул (аксиом) получаются другие формулы (теоремы). В результате этого содержательные рассуждения с понятиями на такой стадии исследования превращаются в некоторые операции с формулами по заранее предписанным правилам. Иначе говоря, содержательное мышление отображается здесь в исчислении. Аксиоматические системы подобного рода часто называют формализованными синтаксическими системами, или исчислениями.

Все три рассмотренных типа аксиоматизации находят применение в современной науке. К формализованным аксиоматическим системам прибегают главным образом при исследовании логических оснований той или иной науки. Наибольший размах такие исследования получили в математике в связи с обнаружением парадоксов теории множеств. Значительную роль формальные системы играют при создании специальных научных языков, с помощью которых удается максимальным образом устранить неточности обычного, естественного языка.

Некоторые ученые считают этот момент чуть ли не главным в процессе применения логико-математических методов в конкретных науках. Так, английский ученый И. Вуджер, являющийся одним из пионеров использования аксиоматического метода в биологии, полагает, что применение этого метода в биологии и других отраслях естествознания состоит в создании научно совершенного языка, в котором возможно исчисление. Основой для построения такого языка служит аксиоматический метод, выраженный в виде формализованной системы, или исчисления. В качестве алфавита формализованного языка служат исходные символы двух типов: логические и индивидуальные.

Логические символы отображают логические связи и отношения, общие для многих или большинства теорий. Индивидуальные символы обозначают объекты исследуемой теории, например математической, физической или биологической. Подобно тому как определенная последовательность букв алфавита образует слово, так и конечная совокупность упорядоченных символов образует формулы и выражения формализованного языка. Для отличия осмысленных выражений языка вводят понятие правильно построенной формулы. Чтобы закончить процесс построения искусственного языка, достаточно четко описать правила вывода или преобразования одних формул в другие и выделить некоторые правильно построенные формулы в качестве аксиом. Таким образом, построение формализованного языка происходит так же, как и построение содержательной аксиоматической системы. Поскольку содержательные рассуждения с формулами в первом случае недопустимы, то логический вывод следствий сводится здесь к выполнению точно предписанных операций обращения с символами и их комбинациями.

Главная цель использования формализованных языков в науке - критический анализ рассуждений, с помощью которых получается новое знание в науке. Поскольку в формализованных языках отображаются некоторые аспекты содержательных рассуждений, то они могут быть использованы также для оценки возможностей автоматизации интеллектуальной деятельности.

Абстрактные аксиоматические системы получили наибольшее применение в современной математике, для которой характерен чрезвычайно общий подход к предмету исследования. Вместо того чтобы говорить о конкретных числах, функциях, линиях, поверхностях, векторах и тому подобных объектах, современный математик рассматривает различные множества абстрактных объектов, свойства которых точно формулируются с помощью аксиом. Такие совокупности, или множества, вместе с описывающими их аксиомами теперь часто называют абстрактными математическими структурами.

Какие преимущества аксиоматический метод даст математике? Во-первых, он значительно расширяет границы применения математических методов и зачастую облегчает процесс исследования. При изучении конкретных явлений и процессов в той или иной области ученый может воспользоваться абстрактными аксиоматическими системами как готовыми орудиями анализа. Убедившись в том, что рассматриваемые явления удовлетворяют аксиомам некоторой математической теории, исследователь может без дополнительной трудоемкой работы сразу же воспользоваться всеми теоремами, которые следуют из аксиом. Аксиоматический подход избавляет специалиста конкретной науки от выполнения довольно сложного и трудного для него математического исследования.

Для математика этот метод дает возможность глубже понять объект исследований, выделить в нем главные направления, понять единство и связь разных методов и теорий. Единство, которое достигается с помощью аксиоматического метода, по образному выражению Н. Бурбаки, не есть единство, «которое дает скелет, лишенный жизни. Это питательный сок организма в полном развитии, податливый и плодотворный инструмент исследования...». Благодаря аксиоматическому методу, особенно в его формализованном виде, становится возможным полностью раскрыть логическую структуру различных теорий. В наиболее совершенном виде это относится к математическим теориям. В естественнонаучном знании приходится ограничиваться аксиоматизацией основного ядра теорий. Далее, применение аксиоматического метода дает возможность лучше контролировать ход наших рассуждений, добиваясь необходимой логической строгости. Однако главная ценность аксиоматизации, особенно в математике, состоит в том, что она выступает как метод исследования новых закономерностей, установления связей между понятиями и теориями, которые раньше казались обособленными друг от друга.

Ограниченное применение аксиоматического метода в естествознании объясняется прежде всего тем, что его теории постоянно должны контролироваться опытом.

В силу этого естественнонаучная теория никогда не стремится к полной законченности и замкнутости. Между тем в математике предпочитают иметь дело с системами аксиом, которые удовлетворяют требованию полноты. Но как показал К. Гёдель, всякая непротиворечивая система аксиом нетривиального характера не может быть полной.

Требование непротиворечивости системы аксиом гораздо существеннее требования их полноты. Если система аксиом будет противоречивой, она не будет представлять никакой ценности для познания. Ограничиваясь неполными системами, можно аксиоматизировать лишь основное содержание естественнонаучных теорий, оставляя возможность для дальнейшего развития и уточнения теории экспериментом. Даже такая ограниченная цель в ряде случаев оказывается весьма полезной, например для обнаружения некоторых неявных предпосылок и допущений теории, контроля полученных результатов, их систематизации и т.п.

Наиболее перспективным применение аксиоматического метода оказывается в тех науках, где используемые понятия обладают значительной стабильностью и где можно абстрагироваться от их изменения и развития.

Именно в этих условиях становится возможным выявить формально-логические связи между различными компонентами теории. Таким образом, аксиоматический метод в большей мере, чем гипотетико-дедуктивный, приспособлен для исследования готового, достигнутого знания.

Анализ возникновения знания, процесса его формирования требует обращения к материалистической диалектике, как наиболее глубокому и всестороннему учению о развитии.

Важным этапом научного познания является теоретическое знание.

Специфика теоретического знания выражается в его опоре на свой теоретический базис. Теоретическое знание имеет ряд важнейших особенностей.

Первая - общность и абстрактность.

Общность заключается в том, что теоретическое знание описывает целые области явлений, давая представление об общих закономерностях их развития.

Абстрактность выражается в том, что теоретическое знание не может быть подтверждено или опровергнуто отдельно взятыми опытными данными. Оно может оцениваться лишь в целом.

Вторая - системность, заключающаяся в изменении отдельных элементов теоретического знания совместного с изменением всей системы в целом. аксиоматический дедуктивный исследовательский поиск

Третья - связь теоретического знания с философским значением. Это не означает их слияния. Научное знание, в отличии от философского, более конкретно.

Четвертая - глубокой проникновение теоретического знания в действительность, отражение сущности явлений и процессов.

Теоретическое знание охватывает внутренние, определяющие связи области явлений, отражает теоретические законы.

Теоретическое знание всегда движется от исходного общего и абстрактного к выводному конкретному.

Теоретический уровень научного исследования представляет собой особую ступень научного познания, обладающей относительной самостоятельностью, имеющей свои особые цели, опирающиеся на философские, логические и материальные цели, опирающиеся на свои логические и материальные средства исследования. Благодаря абстрактности, общности и системности теоретическое знание обладает дедуктивной структурой: теоретическое знание меньшей общности может быть получено из теоретического знания большей общности. Это означает, что в основе теоретического знания лежит исходное, в определенном смысле наиболее общее знание, составляющее теоретический базис научного исследования.

Теоретическое исследование состоит из нескольких стадий.

Первая стадия - построение нового или расширение существующего теоретического базиса.

Изучая, нерешенные на данный момент научные проблемы, исследователь занимается поиском новых идей, которые бы расширяли существующую картину мира. Но если с ее помощью исследователю не удается разрешить эти проблемы, то он пытается построить новую картину мира, вводя в нее новые элементы, позволяющие, по его мнению, привести к положительным результатам. Такими элементами и являются общие идеи и понятия, принципы и гипотезы, служащие основанием для построения новых теорий.

Вторая стадия - состоит в построении научных теорий на уже найденном основании. На этой стадии большую роль играют формальные методы построения логических и математических систем.

В ходе построения новых теорий неизбежен возврат к первой стадии теоретического исследования. Но он не означает растворения первой стадии во второй, поглощение философских методов формальными.

Третья стадия - состоит в применении теории для объяснения какой-либо группы явлений.

Теоретическое объяснение явлений заключается в выведении из теории более простых законов, относящихся к отдельным группам явлений.

Научная теория представляет собой отражение глубинных связей, которые присущи области явлений, объединяющей ряд групп.

Для построения теории необходимо найти главное для данной области явлений понятия, выразить их в символической форме и установить связь между ними.

Понятия вырабатываются исходя из теоретического базиса. А связи между ними обнаруживаются при помощи принципов и гипотез. Довольно часто для построения теории привлекаются эмпирические данные, которые еще не получили теоретического обоснования. Их называют эмпирической предпосылкой теории. Они бывают двух видов: в виде определенных данных опытов и в виде эмпирических законов.

Для формирования новых теорий важны теоретические предпосылки. Именно с их помощью определяются исходные понятия и формулируются принципы и гипотезы, на основе которых возникает возможность установить связи и отношения между исходными понятиями. Определение исходных понятий, а также принципы и гипотезы, необходимые для построения теории, называются основанием теории.

Научная теория наиболее глубокая и концентрированная форма выражения научного знания.

Научная теория строится c помощью методов, к которым относятся:

а) аксиоматический метод, согласно которого, теория строится путем формального введения и определения исходных понятий и действий над ними, образующих основание теории. Аксиоматический метод основан на очевидных положениях (аксиомах), принимаемых без доказательства. По этому методу теория разрабатывается на основе дедукции.

Аксиоматическое построение теории предполагает:

  • * определение идеальных объектов и правил составления из них предположений;
  • * формулировку исходной системы аксиом и правил, вывода из них.

Теория строится на данном основании в качестве системы положений (теорем), выводимых из аксиом по заданным правилам.

Аксиоматический метод нашел свое применение в различных науках. Но наибольшее применение он нашел в математике. И связано это с тем, что он значительно расширяет границы применения математических методов и облегчает процесс исследования. Для математика этот метод дает возможность глубже понять объект исследования, выделить в нем главное направление, понять единство и связь разных методов и теорий.

Наиболее перспективным применение аксиоматического метода оказывается в тех науках, где используемые понятия обладают значительной стабильностью и где можно абстрагироваться от их изменения и развития. Именно в этих условиях становится возможным выявить формально-логические связи между различными компонентами теории.

б) генетический метод Посредством его теория создается на основании, в котором признаются существенными:

некоторые исходные идеальные объекты

некоторые допустимые действия над ними.

Теория строится как конструирование из первоначальных объектов, получаемых посредством допустимых в теории действий. В такой теории признаются существующими кроме исходных только те объекты, которые можно сконструировать хотя бы, при бесконечном процессе построения.

в) гипотетико - дедуктивный метод . Основан на разработке гипотезы, научного предположения, содержащего элементы новизны. Гипотеза должна полнее и лучше объяснять явления и процессы, подтверждаться экспериментально и соответствовать общенаучным законам.

Гипотеза составляет суть, методологическую основу, ядро теоретических исследований. Именно она определяет направление и объем теоретических разработок.

В процессе научного исследования гипотеза используется для двух целей: объяснить с ее помощью существующие факты и предсказать новые, неизвестные. Задача исследования заключается в оценке степени вероятности гипотезы. Выводы из гипотезы различные следствия исследователь судит о ее теоретической и эмпирической пригодности. Если из гипотезы вытекают противоречивые следствия, то гипотеза несостоятельна.

Суть данного метода в выводе следствий из гипотезы.

Этот метод исследования является основным и наиболее распространенным в прикладных науках.

Это обусловлено тем, что они имеют дело, прежде всего с данными наблюдений и экспериментов.

Применяя этот метод, исследователь, после обработки опытных данных, стремиться понять и объяснить их теоретически. Гипотеза и служит в качестве предварительного объяснения. Но здесь необходимо, чтобы следствия из гипотезы не противоречили опытным фактам.

Гипотетико-дедуктивный метод является наиболее подходящим для исследователя структуры значительного числа естественнонаучных теорий. Именно он используется для их построения.

Этот метод наиболее широкое распространение получил в физике.

Гипотетико-дедуктивный метод стремится привести в единую все имеющиеся знания и установить логическую связь между ними. Этот метод дает возможность исследовать структуру и взаимосвязь не только между гипотезами разного уровня, но и характер их подтверждения эмпирическими данными. Вследствие установления логической связи между гипотезами подтверждение одной из них будет косвенно свидетельствовать о подтверждении других, логически с ней связанных гипотез.

В процессе научного исследования наиболее трудная задача состоит в открытии и формулировании тех принципов и гипотез, которые служат основой для дальнейших выводов.

Гипотетико-дедуктивный метод играет в этом процессе вспомогательную роль, так как с его помощью не выдвигаются новые гипотезы, а только проверяются вытекающие из них следствия, которые контролируют процесс исследования.

г) математические методы Термин "математические методы" означает использование конкретными науками аппарата каких-либо математических теорий.

С помощью этих методов объекты конкретной науки, их свойства и зависимости описываются на математическом языке.

Математизация конкретной науки плодотворна только тогда, когда в ней выработаны достаточно четко специальные понятия, обладающие ясно сформулированным содержанием и строго определенной областью приложения. Но при этом исследователь должен знать, что математическая теория сама по себе не определяет то содержание, которое вкладывается в эту форму. Поэтому необходимо различать математическую форму научного знания и реальное содержание его.

В различных науках используются различные математические теории.

Так в некоторых науках математические формулы используются на уровне арифметики, но в других - привлекаются средства математического анализа, в третьих - еще более сложный аппарат теории групп, теории вероятностей и т.п.

Но при этом далеко не всегда удается выразить в математической форме все существующие свойства и зависимости объектов, исследуемых конкретной наукой. Применение математических методов позволяет, прежде всего, отразить количественную сторону явлений. Но было бы неверным сводить использование математики только лишь к количественному описанию. Современная математика располагает теоретическими средствами, дающими возможность отобразить и обобщить на ее языке многие качественные особенности объектов действительности.

Математические методы можно применять практически в любой науке.

Это обуславливается тем, что объекты, изучаемые любой наукой, имеют количественную определенность, которая исследуется с помощью математики. Но степень использования математических методов в различных науках различно. Математические методы можно применять в конкретной науке лишь тогда, когда она созрела для этого, то есть, когда в ней проделано больше предварительной работы по качественному изучению явлений методами самой науки.

Использование математических методов плодотворно для любой науки. Оно ведет к точному количественному описанию явлений, способствует выработке четких и ясных понятий, получению выводов, которые невозможно получить другими путями.

В некоторых случаях сама по себе математическая обработка материала приводит к возникновению новых идей. Использование математических методов конкретной наукой свидетельствует о ее более высоком теоретическом и логическом уровне.

Современная наука в значительной степени систематизирована. Если в недалеком прошлом математические методы использовались в астрономии, физике, химии, механике, то в настоящее время она успешно применяется в биологии, социологии, экономике и других науках.

В настоящее время, время ЭВМ, стало возможным математическое решение задач, которые считались неразрешимыми из-за сложности расчетов.

В настоящее время велико и эвристическое значение математических методов в науке. Математика все чаще становится орудием научных открытий. Она не только позволяет предсказывать новые факты, но и приводит к формированию новых научных идей и понятий.