Как решать уравнения с разделяющимися переменными. Дифференциальные уравнения первого порядка. Примеры решений. Дифференциальные уравнения с разделяющимися переменными. Пример решения ДУ с разделяющимися переменными

Определение 7. Уравнение вида называется уравнением с разделяющимися переменными .

Это уравнение можно привести к виду , разделив все члены уравнения на произведение .

Например, решить уравнение

Решение. Производная равна , значит

Разделяя переменные, получим:

.

Теперь интегрируем:


Решите дифференциальное уравнение

Решение. Это уравнение первого порядка с разделяющимися переменными. Для разделения переменных этого уравнения в виде и разделим его почленно на произведение . В результате получим или

интегрируя обе части последнего уравнения, получим общее решение

аrcsin y = arcsin x + C

Найдем теперь частное решение, удовлетворяющее начальным условиям . Подставляя в общее решение начальные условия, получим

; откуда C=0

Следовательно, частное решение имеет вид arc sin y=arc sin x, но синусы равных дуг равны между собой

sin (arcsin y) = sin (arcsin x).

Откуда, по определению арксинуса, следует, что y = x.

Однородные дифференциальные уравнения

Определение 8. Дифференциальное уравнение вида, которое можно привести к виду , называется однородным .

Для интегрирования таких уравнений производят замену переменных, полагая . Эта подстановка приводит к дифференциальному уравнению относительно x и t, в котором переменные разделяются, после чего уравнение можно интегрировать. Для получения окончательного ответа надо переменную t заменить на .

Например, решить уравнение

Решение. Перепишем уравнение так:

получим:

После сокращения на х 2 имеем:

Заменим t на :

Вопросы для повторения

1 Какое уравнение называется дифференциальным?

2 Назовите виды дифференциальных уравнений.

3 Рассказать алгоритмы решения всех названных уравнений.

Пример 3

Решение: Переписываем производную в нужном нам виде:

Оцениваем, можно ли разделить переменные? Можно. Переносим второе слагаемое в правую часть со сменой знака:

И перекидываем множители по правилу пропорции:

Переменные разделены, интегрируем обе части:

Должен предупредить, приближается судный день. Если вы плохо изучили неопределенные интегралы , прорешали мало примеров, то деваться некуда – придется их осваивать сейчас.

Интеграл левой части легко найти , с интегралом от котангенса расправляемся стандартным приемом, который мы рассматривали на уроке Интегрирование тригонометрических функций в прошлом году:


В правой части у нас получился логарифм, согласно моей первой технической рекомендации, в этом случае константу тоже следует записать под логарифмом.

Теперь пробуем упростить общий интеграл. Поскольку у нас одни логарифмы, то от них вполне можно (и нужно) избавиться. Максимально «упаковываем» логарифмы. Упаковка проводится с помощью трёх свойств:


Пожалуйста, перепишите эти три формулы к себе в рабочую тетрадь, при решении диффуров они применяются очень часто.

Решение распишу очень подробно:


Упаковка завершена, убираем логарифмы:

Можно ли выразить «игрек»? Можно. Надо возвести в квадрат обе части. Но делать этого не нужно.

Третий технический совет: Если для получения общего решения нужно возводить в степень или извлекать корни, то в большинстве случаев следует воздержаться от этих действий и оставить ответ в виде общего интеграла. Дело в том, что общее решение будет смотреться вычурно и ужасно – с большими корнями, знаками .

Поэтому ответ запишем в виде общего интеграла. Хорошим тоном считается представить общий интеграл в виде , то есть, в правой части, по возможности, оставить только константу. Делать это не обязательно, но всегда же выгодно порадовать профессора;-)

Ответ: общий интеграл:

Примечание: общий интеграл любого уравнения можно записать не единственным способом. Таким образом, если у вас не совпал результат с заранее известным ответом, то это еще не значит, что вы неправильно решили уравнение.

Общий интеграл тоже проверяется довольно легко, главное, уметь находить производные от функции, заданной неявно . Дифференцируем ответ:

Умножаем оба слагаемых на :

И делим на :

Получено в точности исходное дифференциальное уравнение , значит, общий интеграл найден правильно.

Пример 4

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию . Выполнить проверку.

Это пример для самостоятельного решения. Напоминаю, что задача Коши состоит из двух этапов:
1) Нахождение общего решение.
2) Нахождение частного решения.

Проверка тоже проводится в два этапа (см. также образец Примера 2), нужно:
1) Убедиться, что найденное частное решение действительно удовлетворяет начальному условию.
2) Проверить, что частное решение вообще удовлетворяет дифференциальному уравнению.

Полное решение и ответ в конце урока.

Пример 5

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию . Выполнить проверку.

Решение: Сначала найдем общее решение.Данное уравнение уже содержит готовые дифференциалы и , а значит, решение упрощается. Разделяем переменные:

Интегрируем уравнение:

Интеграл слева – табличный, интеграл справа – берем методом подведения функции под знак дифференциала :

Общий интеграл получен, нельзя ли удачно выразить общее решение? Можно. Навешиваем логарифмы:

(Надеюсь, всем понятно преобразование , такие вещи надо бы уже знать)

Итак, общее решение:

Найдем частное решение, соответствующее заданному начальному условию . В общее решение вместо «икса» подставляем ноль, а вместо «игрека» логарифм двух:

Более привычное оформление:

Подставляем найденное значение константы в общее решение.

Ответ: частное решение:

Проверка: Сначала проверим, выполнено ли начальное условие :
– всё гуд.

Теперь проверим, а удовлетворяет ли вообще найденное частное решение дифференциальному уравнению. Находим производную:

Смотрим на исходное уравнение: – оно представлено в дифференциалах. Есть два способа проверки. Можно из найденной производной выразить дифференциал :

Подставим найденное частное решение и полученный дифференциал в исходное уравнение :

Используем основное логарифмическое тождество :

Получено верное равенство, значит, частное решение найдено правильно.

Второй способ проверки зеркален и более привычен: из уравнения выразим производную, для этого разделим все штуки на :

И в преобразованное ДУ подставим полученное частное решение и найденную производную . В результате упрощений тоже должно получиться верное равенство.

Пример 6

Решить дифференциальное уравнение . Ответ представить в виде общего интеграла .

Это пример для самостоятельного решения, полное решение и ответ в конце урока.

Какие трудности подстерегают при решении дифференциальных уравнений с разделяющимися переменными?

1) Не всегда очевидно (особенно, чайнику), что переменные можно разделить. Рассмотрим условный пример: . Здесь нужно провести вынесение множителей за скобки: и отделить корни: . Как действовать дальше – понятно.

2) Сложности при самом интегрировании. Интегралы нередко возникают не самые простые, и если есть изъяны в навыках нахождения неопределенного интеграла , то со многими диффурами придется туго. К тому же у составителей сборников и методичек популярна логика «раз уж дифференциальное уравнение является простым, то пусть интегралы будут посложнее».

3) Преобразования с константой. Как все заметили, с константой в дифференциальных уравнениях можно делать практически всё, что угодно. И не всегда такие преобразования понятны новичку. Рассмотрим еще один условный пример: . В нём целесообразно умножить все слагаемые на 2: . Полученная константа – это тоже какая-то константа, которую можно обозначить через : . Да, и коль скоро в правой части логарифм, то константу целесообразно переписать в виде другой константы: .

Беда же состоит в том, что частенько не заморачиваются с индексами, и используют одну и ту же букву . И в результате запись решения принимает следующий вид:

Что за фигня? Тут же ошибки. Формально – да. А неформально – ошибки нет, подразумевается, что при преобразовании константы всё равно получается какая-то другая константа .

Или такой пример, предположим, что в ходе решения уравнения получен общий интеграл . Такой ответ выглядит некрасиво, поэтому целесообразно сменить у всех множителей знаки: . Формально по записи тут опять ошибка, следовало бы записать . Но неформально подразумевается, что – это всё равно какая-то другая константа (тем более может принимать любое значение), поэтому смена у константы знака не имеет никакого смысла и можно использовать одну и ту же букву .

Я буду стараться избегать небрежного подхода, и всё-таки проставлять у констант разные индексы при их преобразовании.

Пример 7

Решить дифференциальное уравнение . Выполнить проверку.

Решение: Данное уравнение допускает разделение переменных. Разделяем переменные:

Интегрируем:

Константу тут не обязательно определять под логарифм, поскольку ничего путного из этого не получится.

Ответ: общий интеграл:

Проверка: Дифференцируем ответ (неявную функцию):

Избавляемся от дробей, для этого умножаем оба слагаемых на :

Получено исходное дифференциальное уравнение, значит, общий интеграл найден правильно.

Пример 8

Найти частное решение ДУ.
,

Это пример для самостоятельного решения. Единственный комментарий, здесь получится общий интеграл, и, правильнее говоря, нужно исхитриться найти не частное решение, ачастный интеграл . Полное решение и ответ в конце урока.

Как уже отмечалось, в диффурах с разделяющимися переменными нередко вырисовываются не самые простые интегралы. И вот еще парочка таких примеров для самостоятельного решения. Рекомендую всем прорешать примеры №№9-10, независимо от уровня подготовки, это позволит актуализировать навыки нахождения интегралов или восполнить пробелы в знаниях.

Пример 9

Решить дифференциальное уравнение

Пример 10

Решить дифференциальное уравнение

Помните, что общий интеграл можно записать не единственным способом, и внешний вид ваших ответов может отличаться от внешнего вида моих ответов. Краткий ход решения и ответы в конце урока.

Успешного продвижения!

Решения и ответы:

Пример 4: Решение: Найдем общее решение. Разделяем переменные:


Интегрируем:



Общий интеграл получен, пытаемся его упростить. Упаковываем логарифмы и избавляемся от них:


Выражаем функцию в явном виде, используя .
Общее решение:

Найдем частное решение, удовлетворяющее начальному условию .
Способ первый, вместо «икса» подставляем 1, вместо «игрека» – «е»:
.
Способ второй:

Подставляем найденное значение константы в общее решение.
Ответ: частное решение:

Проверка: Проверяем, действительно ли выполняется начальное условие:
, да, начальное условие выполнено.
Проверяем, удовлетворяет ли вообще частное решение дифференциальному уравнению. Сначала находим производную:

Подставим полученное частное решение и найденную производную в исходное уравнение :

Получено верное равенство, значит, решение найдено правильно.

Пример 6: Решение: Данное уравнение допускает разделение переменных. Разделяем переменные и интегрируем:




Ответ: общий интеграл:

Примечание: тут можно получить и общее решение:

Но, согласно моему третьему техническому совету, делать это нежелательно, поскольку такой ответ смотрится довольно хреново.

Пример 8: Решение: Данное ДУ допускает разделение переменных. Разделяем переменные:



Интегрируем:


Общий интеграл:
Найдем частное решение (частный интеграл), соответствующий заданному начальному условию . Подставляем в общее решение и :

Ответ: Частный интеграл:
В принципе, ответ можно попричесывать и получить что-нибудь более компактное. .

Рассмотрим примеры решения дифференциальных уравнений с разделяющимися переменными.

1) Проинтегрировать дифференциальное уравнение: (1+x²)dy-2xydx=0.

Данное уравнение является уравнением с разделяющимися переменными, записанное в виде

Оставляем слагаемое с dy в левой части уравнения, с dx — переносим в правую часть:

(1+x²)dy = 2xydx

Разделяем переменные, то есть в левой части оставляем только dy и все, что содержит y, в правой dx и x. Для этого обе части уравнения делим на (1+x²) и на y. Получаем

Интегрируем обе части уравнения:

В левой части — табличный интеграл. Интеграл в правой части можно найти, например, сделав замену t=1+x², тогда

dt=(1+x²)’dx=2xdx.

В примерах, где есть возможность провести потенцирование, то есть убрать логарифмы, удобно брать не С, а lnC. Именно так мы и сделаем: ln│y│=ln│t│+ln│C│. Так как сумма логарифмов равна логарифму произведения, то ln│y│=ln│Сt│, откуда y=Ct. Делаем обратную замену,и получаем общее решение: y=C(1+x²).

Мы делили на 1+x² и на y при условии, что они не равны нулю. Но 1+x² не равно нулю при любых x. А y=0 при С=0, таким образом, потери корней не произошло.

Ответ: y=C(1+x²).

2) Найти общий интеграл уравнения

Переменные можно разделить.

Умножаем обе части уравнения на dx и делим на

Получаем:

Теперь интегрируем

В левой части — табличный интеграл. Справа — делаем замену 4-x²=t, тогда dt=(4-x²)’dx=-2xdx. Получаем

Если вместо С взять 1/2 ln│C│, можно ответ записать более компактно:

Умножим обе части на 2 и применим свойство логарифма:

Мы делили на

Они не равны нулю: y²+1 — так как сумма неотрицательных чисел не равна нулю, а подкоренное выражение не равно нулю по смыслу условия. Значит, потери корней не произошло.

3) a) Найти общий интеграл уравнения (xy²+y²)dx+(x²-x²y)dy=0.

б) Найти частный интеграл этого уравнения, удовлетворяющий начальному условию y(е)=1.

а) Преобразуем левую часть уравнения: y²(x+1)dx+x²(1-y)dy=0, затем

y²(x+1)dx=-x²(1-y)dy. Делим обе части на x²y² при условии, что ни x, ни y не равны нулю. Получаем:

Интегрируем уравнение:

Так как разность логарифмов равна логарифму частного, имеем:

Это — общий интеграл уравнения. В процессе решения мы ставили условие, что произведение x²y² не равно нулю, откуда следует, что x и y не должны быть равными нулю. Подставив x=0 и y=0 в условие:(0.0²+0²)dx+(0²-0²0)dy=0 получаем верное равенство 0=0. Значит, x=0 и y=0 тоже являются решениями данного уравнения. Но в общий интеграл они не входят ни при каких С (нули не могут стоять под знаком логарифма и в знаменателе дроби), поэтому эти решения следует записать дополнительно к общему интегралу.

б) Так как y(е)=1, подставляем в полученное решение x=e, y=1 и находим С:

Примеры для самопроверки:

Часто одно лишь упоминание дифференциальных уравнений вызывает у студентов неприятное чувство. Почему так происходит? Чаще всего потому, что при изучении основ материала возникает пробел в знаниях, из-за которого дальнейшее изучение диффуров становиться просто пыткой. Ничего не понятно, что делать, как решать, с чего начать?

Однако мы постараемся вам показать, что диффуры – это не так сложно, как кажется.

Основные понятия теории дифференциальных уравнений

Со школы нам известны простейшие уравнения, в которых нужно найти неизвестную x. По сути дифференциальные уравнения лишь чуточку отличаются от них – вместо переменной х в них нужно найти функцию y(х) , которая обратит уравнение в тождество.

Дифференциальные уравнения имеют огромное прикладное значение. Это не абстрактная математика, которая не имеет отношения к окружающему нас миру. С помощью дифференциальных уравнений описываются многие реальные природные процессы. Например, колебания струны, движение гармонического осциллятора, посредством дифференциальных уравнений в задачах механики находят скорость и ускорение тела. Также ДУ находят широкое применение в биологии, химии, экономике и многих других науках.

Дифференциальное уравнение (ДУ ) – это уравнение, содержащее производные функции y(х), саму функцию, независимые переменные и иные параметры в различных комбинациях.

Существует множество видов дифференциальных уравнений: обыкновенные дифференциальные уравнения, линейные и нелинейные, однородные и неоднородные, дифференциальные уравнения первого и высших порядков, дифуры в частных производных и так далее.

Решением дифференциального уравнения является функция, которая обращает его в тождество. Существуют общие и частные решения ДУ.

Общим решением ДУ является общее множество решений, обращающих уравнение в тождество. Частным решением дифференциального уравнения называется решение, удовлетворяющее дополнительным условиям, заданным изначально.

Порядок дифференциального уравнения определяется наивысшим порядком производных, входящих в него.


Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие одну независимую переменную.

Рассмотрим простейшее обыкновенное дифференциальное уравнение первого порядка. Оно имеет вид:

Решить такое уравнение можно, просто проинтегрировав его правую часть.

Примеры таких уравнений:

Уравнения с разделяющимися переменными

В общем виде этот тип уравнений выглядит так:

Приведем пример:

Решая такое уравнение, нужно разделить переменные, приведя его к виду:

После этого останется проинтегрировать обе части и получить решение.


Линейные дифференциальные уравнения первого порядка

Такие уравнения имеют вид:

Здесь p(x) и q(x) – некоторые функции независимой переменной, а y=y(x) – искомая функция. Приведем пример такого уравнения:

Решая такое уравнение, чаще всего используют метод вариации произвольной постоянной либо представляют искомую функцию в виде произведения двух других функций y(x)=u(x)v(x).

Для решения таких уравнений необходима определенная подготовка и взять их “с наскока” будет довольно сложно.

Пример решения ДУ с разделяющимися переменными

Вот мы и рассмотрели простейшие типы ДУ. Теперь разберем решение одного из них. Пусть это будет уравнение с разделяющимися переменными.

Сначала перепишем производную в более привычном виде:

Затем разделим переменные, то есть в одной части уравнения соберем все "игреки", а в другой – "иксы":

Теперь осталось проинтегрировать обе части:

Интегрируем и получаем общее решение данного уравнения:

Конечно, решение дифференциальных уравнений – своего рода искусство. Нужно уметь понимать, к какому типу относится уравнение, а также научиться видеть, какие преобразования нужно с ним совершить, чтобы привести к тому или иному виду, не говоря уже просто об умении дифференцировать и интегрировать. И чтобы преуспеть в решении ДУ, нужна практика (как и во всем). А если у Вас в данный момент нет времени разбираться с тем, как решаются дифференциальные уравнения или задача Коши встала как кость в горле или вы не знаете, как правильно оформить презентацию , обратитесь к нашим авторам. В сжатые сроки мы предоставим Вам готовое и подробное решение, разобраться в подробностях которого Вы сможете в любое удобное для Вас время. А пока предлагаем посмотреть видео на тему "Как решать дифференциальные уравнения":

Дифференциальное уравнение с разделенными переменными записывается в виде: (1). В этом уравнении одно слагаемое зависит только от x, а другое – от y. Проинтегрировав почленно это уравнение, получаем:
– его общий интеграл.

Пример : найти общий интеграл уравнения:
.

Решение: данное уравнение – дифференциальное уравнение с разделенными переменными. Поэтому
или
Обозначим
. Тогда
– общий интеграл дифференциального уравнения.

Уравнение с разделяющимися переменными имеет вид (2). Уравнение (2)легко сводиться к уравнению (1) путем почленного деления его на
. Получаем:

– общий интеграл.

Пример: Решить уравнение .

Решение: преобразуем левую часть уравнения: . Делим обе части уравнения на


Решением является выражение:
т.е.

Однородные дифференциальные уравнения. Уравнения Бернулли. Линейные дифференциальные уравнения первого порядка.

Уравнение вида называетсяоднородным , если
и
– однородные функции одного порядка (измерения). Функция
называется однородной функцией первого порядка (измерения), если при умножении каждого ее аргумента на произвольный множительвся функция умножиться на, т.е.
=
.

Однородное уравнение может быть приведено к виду
. С помощью подстановки
(
)однородное уравнение приводится к уравнению с разделяющимися переменными по отношению к новой функции.

Дифференциальное уравнение первого порядка называется линейным , если его можно записать в виде
.

Метод Бернулли

Решение уравнения
ищется в виде произведения двух других функций, т.е. с помощью подстановки
(
).

Пример: проинтегрировать уравнение
.

Полагаем
. Тогда , т.е. . Сначала решаем уравнение
=0:


.

Теперь решаем уравнение
т.е.


. Итак, общее решение данного уравнения есть
т.е.

Уравнение Я. Бернулли

Уравнение вида , где
называетсяуравнением Бернулли. Данное уравнение решается с помощью метода Бернулли.

Однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Однородным линейным дифференциальным уравнением второго порядка называется уравнение вида (1) , гдеипостоянны.

Частные решения уравнения (1) будем искать в виде
, гдек – некоторое число. Дифференцируя эту функцию два раза и подставляя выражения для
в уравнение (1), получимт.е.или
(2) (
).

Уравнение 2 называется характеристическим уравнением дифференциального уравнения.

При решении характеристического уравнения (2) возможны три случая.

Случай 1. Корнииуравнения (2) действительные и различные:

и

.

Случай 2. Корнииуравнения (2) действительные и равные:
. В этом случае частными решениями уравнения (1) являются функции
и
. Следовательно, общее решение уравнения (1) имеет вид
.

Случай 3. Корнииуравнения (2) комплексные:
,
. В этом случае частными решениями уравнения (1) являются функции
и
. Следовательно, общее решение уравнения (1) имеет вид

Пример. Решить уравнение
.

Решение: составим характеристическое уравнение:
. Тогда
. Общее решение данного уравнения
.

Экстремум функции нескольких переменных. Условный экстремум.

Экстремум функции нескольких переменных

Определение. Точка М (х о о ) называется точкой максимума (минимума) функции z = f (x , у), если существует окрестность точки М, такая, что для всех точек {х, у) из этой окрестности выполня­ется неравенство
(
)

На рис. 1 точка А
- есть точка минимума, а точка В
-
точка максимума.

Необходи­мое условие экстремума - многомерный аналог теоре­мы Ферма.

Теорема. Пусть точка
– есть точка экстре­мума дифференцируемой функ­ции
z = f (x , у). Тогда частные производные
и
в
этой точке равны нулю.

Точки, в которых выполнены необходимые условия экстрему­ма функции z = f (x , у), т.е. частные производные z " x и z " y равны нулю, называются критическими или стационарными.

Равенство частных производных нулю выражает лишь необходи­мое, но недостаточное условие экстремума функции нескольких переменных.

На рис. изображена так называемая седловая точка М (х о о ). Частные производные
и
равны ну­лю, но, очевидно, никакого экс­тремума в точке М(х о о ) нет.

Такие седловые точки явля­ются двумерными аналогами точек перегиба функций одной переменной. Задача заключается в том, чтобы отделить их от то­чек экстремума. Иными слова­ми, требуется знать достаточное условие экстремума.

Теорема (достаточное условие экстремума функции двух пере­менных). Пусть функция z = f (x , у): а) определена в некоторой окре­стности критической точки (х о о ), в которой
=0 и
=0
;

б) имеет в этой точке непрерывные частные производные вто­рого порядка
;

;
Тогда, если ∆=АС- В 2 >0, то в точке (х о о ) функ­ция z = f (x , у) имеет экстремум, причем если А<0 - максимум, если А>0 - минимум. В случае ∆=АС- В 2 <0, функция z = f (x , у) экстре­мума не имеет. Если ∆=АС- В 2 =0, то вопрос о наличии экстрему­ма остается открытым.

Исследование функции двух переменных на экстремум реко­мендуется проводить по следующей схеме:

    Найти частные производные функции z " x и z " y .

    Решить систему уравнений z " x =0, z " y =0 и найти критические точки функции.

    Найти частные производные второго порядка, вычислить их значения в каждой критической точке и с помощью достаточ­ного условия сделать вывод о наличии экстремумов.

    Найти экстремумы (экстремальные значения) функции.

Пример. Найти экстремумы функции

Решение. 1. Находим частные производные


2. Критические точки функции находим из системы уравнений:

имеющей четыре решения (1; 1), (1; -1), (-1; 1) и (-1; -1).

3. Находим частные производные второго порядка:

;
;
, вычисляем их значения в каждой критической точке и проверяем в ней выпол­нение достаточного условия экстремума.

Например, в точке (1; 1) A = z "(1; 1)= -1; В=0; С= -1. Так как = АС- В 2 = (-1) 2 -0=1 >0 и А=-1<0, то точка (1; 1) есть точка максимума.

Аналогично устанавливаем, что (-1; -1) - точка минимума, а в точках (1; -1) и (-1; 1), в которых =АС- В 2 <0, - экстремума нет. Эти точки являются седловыми.

4. Находим экстремумы функции z max = z(l; 1) = 2, z min = z(-l; -1) = -2,

Условный экстремум. Метод множителей Лагранжа.

Рассмотрим задачу, специфическую для функций нескольких переменных, когда ее экстремум ищется не на всей области опреде­ления, а на множестве, удовлетворяющем некоторому условию.

Пусть рассматривается функция z = f (x , y ), аргументы х и у которой удовлетворяют условию g (х,у) = С, называемому уравне­нием связи.

Определение. Точка
называется точкой
условного мак­симума (минимума), если существует такая окрестность этой точки, что для всех точек (х,у) из этой окрестности удовлетворя­ющих условию g (x , y ) = С, выполняется неравенство

(
).

На рис. изображена точка условного максимума
.
Очевидно, что она не является точкой безусловного экстремума функции z = f (x , y ) (на рис. это точка
).

Наиболее простым способом нахождения условного экстре­мума функции двух переменных является сведение задачи к оты­сканию экстремума функции одной переменной. Допустим уравнение связи g (x , y ) = С удалось разрешить относи­тельно одной из перемен­ных, например, выразить у через х:
.
Подста­вив полученное выражение в функцию двух перемен­ных, получим z = f (x , y ) =
, т.е. функцию одной переменной. Ее экстремум и будет услов­ным экстремумом функ­ции z = f (x , y ).

Пример. х 2 + y 2 при условии 3х +2у = 11.

Решение. Выразим из уравнения 3х +2у = 11 переменную y через переменную x и подставим полученное
в функциюz. Получим z = x 2 +2
илиz =
.
Эта функция имеет единственный минимум при = 3. Соответствующее значение функции
Таким образом, (3; 1) - точка условного экстремума (минимума).

В рассмотренном примере уравнение связи g (x , у) = С оказа­лось линейным, поэтому его легко удалось разрешить относи­тельно одной из переменных. Однако в более сложных случаях сделать это не удается.

Для отыскания условного экстремума в общем случае исполь­зуется метод множителей Лагранжа.

Рассмотрим функцию трех переменных

Эта функция называется функцией Лагранжа, а - множите­лем Лагранжа. Верна следующая теорема.

Теорема. Если точка
является точкой условного экс­тремума функции
z = f (x , y ) при условии g (x , y ) = С, то существует значение такое, что точка
является точкой экстре­мума функции
L { x , y , ).

Таким образом, для нахождения условного экстремума функ­ции z = f (х,у) при условии g (x , y ) = С требуется найти решение системы

На рис. показан геометрический смысл условий Ла­гранжа. Линия g (х,у) = С пунктирная, линия уровня g (x , y ) = Q функции z = f (x , y ) сплошные.

Из рис. следует, что в точке условного экстремума линия уровня функции z = f (x , y ) касает­ся линии g (x , y ) = С.

Пример. Найти точки максимума и мини­мума функции z = х 2 + y 2 при условии 3х +2у = 11, ис­пользуя метод множителей Ла­гранжа.

Решение. Составляем функцию Лагранжа L = х 2 + 2у 2 +

Приравнивая к нулю ее частные производные, получим систему уравнений

Ее единственное решение (х=3, у=1, =-2). Таким образом, точкой условного экстремума может быть только точка (3;1). Не­трудно убедиться в том, что в этой точке функция z = f (x , y ) имеет условный минимум.

Рассмотрен способ решения дифференциальных уравнений, приводящихся к уравнениям с разделяющимися переменными. Дан пример подробного решения дифференциального уравнения, приводящегося к уравнению с разделяющимися переменными.

Содержание

Постановка задачи

Рассмотрим дифференциальное уравнение
(i) ,
где f - функция, a, b, c - постоянные, b ≠ 0 .
Это уравнение приводится к уравнению с разделяющимися переменными.

Метод решения

Делаем подстановку:
u = ax + by + c
Здесь y - функция от переменной x . Поэтому u - тоже функция от переменной x .
Дифференцируем по x
u′ = (ax + by + c)′ = a + by′
Подставляем (i)
u′ = a + by′ = a +b f(ax + by + c) = a + b f(u)
Или:
(ii)
Разделяем переменные. Умножаем на dx и делим на a + b f(u) . Если a + b f(u) ≠ 0 , то

Интегрируя, мы получаем общий интеграл исходного уравнения (i) в квадратурах:
(iii) .

В заключении рассмотрим случай
(iv) a + b f(u) = 0 .
Предположим, что это уравнение имеет n корней u = r i , a + b f(r i ) = 0 , i = 1, 2, ... n . Поскольку функция u = r i является постоянной, то ее производная по x равна нулю. Поэтому u = r i является решением уравнения (ii) .
Однако, уравнение (ii) не совпадает с исходным уравнением (i) и, возможно, не все решения u = r i , выраженные через переменные x и y , удовлетворяют исходному уравнению (i) .

Таким образом, решением исходного уравнения является общий интеграл (iii) и некоторые корни уравнения (iv) .

Пример решения дифференциального уравнения, приводящегося к уравнению с разделяющимися переменными

Решить уравнение
(1)

Делаем подстановку:
u = x - y
Дифференцируем по x и выполняем преобразования:
;

Умножаем на dx и делим на u 2 .

Если u ≠ 0 , то получаем:

Интегрируем:

Применяем формулу из таблицы интегралов :

Вычисляем интеграл

Тогда
;
, или

Общее решение:
.

Теперь рассмотрим случай u = 0 , или u = x - y = 0 , или
y = x .
Поскольку y′ = (x)′ = 1 , то y = x является решением исходного уравнения (1) .

;
.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.